【题目】定义:若函数的定义域为,且存在非零常数,对任意, 恒成立,则称为线周期函数, 为的线周期.
(Ⅰ)下列函数①,②,③(其中表示不超过的最大整数),是线周期函数的是(直接填写序号);
(Ⅱ)若为线周期函数,其线周期为,求证:函数为周期函数;
(Ⅲ)若为线周期函数,求的值.
【答案】(1) ③(2)见解析(3)
【解析】试题分析:(Ⅰ)根据新定义逐个判断即可;
(Ⅱ)根据新定义证明出 ,即可证得函数为周期函数;
(Ⅲ)φ(x)=sinx+kx为线周期函数,可得存在非零常数T,对任意x∈R,sin(x+T)+k(x+T)=sinx+kx+T.即可得到2kT=2T,解得验证即可.
试题解析:
(Ⅰ)对于①f(x+T)=2x+T=2x2T=f(x)2T,故不是线周期函数
对于②f(x+T)=log2(x+T)≠f(x)+T,故不是线周期函数
对于③f(x+T)=[x+T]=[x]+T=f(x)+T,故是线周期函数
故答案为③
(Ⅱ)证明:∵为线周期函数,其线周期为,
∴存在非零常数,对任意, 恒成立.
∵,
∴ .
∴为周期函数.
(Ⅲ)∵为线周期函数,
∴存在非零常数,对任意, .
∴.
令,得;…………①
令,得;…………②
①②两式相加,得.
∵,
∴.
检验:
当时, .
存在非零常数,对任意,
,
∴为线周期函数.
综上, .
科目:高中数学 来源: 题型:
【题目】有一种新型的洗衣液,去污速度特别快.已知每投放(且)个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度(克/升)随着时间 (分钟) 变化的函数关系式近似为,其中.根据经验,当水中洗衣液的浓度不低于4(克/升)时,它才能起到有效去污的作用.
(1)若投放个单位的洗衣液,3分钟时水中洗衣液的浓度为4 (克/升),求的值;
(2)若投放4个单位的洗衣液,则有效去污时间可达几分钟?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E的右焦点与抛物线y2=4x的焦点重合,点M 在椭圆E上. (Ⅰ)求椭圆E的标准方程;
(Ⅱ)设P(﹣4,0),直线y=kx+1与椭圆E交于A,B两点,若直线PA,PB关于x轴对称,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如下图,某地一天从6时到14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b. (0 <φ < π)
(1)求这段时间的最大温差;
(2)写出这段曲线的函数解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数满足: ,且该函数的最小值为1.
(1)求此二次函数的解析式;
(2)若函数的定义域为(其中),问是否存在这样的两个实数, ,使得函数的值域也为?若存在,求出, 的值;若不存在,请说明理由.
(3)若对于任意的,总存在使得,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《中华人民共和国个人所得税法》规定,公民全月工资、薪金(扣除三险一金后)所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额个人所得税计算公式:应纳税额=工资-三险一金=起征点. 其中,三险一金标准是养老保险8%、医疗保险2%、失业保险1%、住房公积金8%,此项税款按下表分段累计计算:
(1)某人月收入15000元(未扣三险一金),他应交个人所得税多少元?
(2)某人一月份已交此项税款为1094元,那么他当月的工资(未扣三险一金)所得是多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数f(x)=sin2x的图象向右平移φ(0<φ< )个单位后得到函数g(x)的图象,若函数g(x)在区间[0, ]上单调递增,则φ的取值范围是( )
A.[ , ]
B.[ , )
C.[ , ]
D.[ , ]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数是定义在实数集上的奇函数,并且在区间上是单调递增的函数.
(1)研究并证明函数在区间上的单调性;
(2)若实数满足不等式,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com