精英家教网 > 高中数学 > 题目详情

【题目】定义:若函数的定义域为,且存在非零常数,对任意 恒成立,则称为线周期函数, 的线周期.

(Ⅰ)下列函数①,②,③(其中表示不超过的最大整数),是线周期函数的是(直接填写序号);

(Ⅱ)若为线周期函数,其线周期为,求证:函数为周期函数;

(Ⅲ)若为线周期函数,求的值.

【答案】(1) ③(2)见解析(3)

【解析】试题分析:Ⅰ)根据新定义逐个判断即可

Ⅱ)根据新定义证明出 ,即可证得函数为周期函数

)φ(x)=sinx+kx为线周期函数,可得存在非零常数T,对任意xR,sin(x+T)+k(x+T)=sinx+kx+T.即可得到2kT=2T,解得验证即可.

试题解析:

(Ⅰ)对于①fx+T=2x+T=2x2T=fx2T,故不是线周期函数
对于②fx+T=log2x+T≠fx+T,故不是线周期函数
对于③fx+T=[x+T]=[x]+T=fx+T,故是线周期函数
故答案为③

(Ⅱ)证明:∵为线周期函数,其线周期为

∴存在非零常数,对任意 恒成立.

.

为周期函数.

(Ⅲ)∵为线周期函数,

∴存在非零常数,对任意 .

.

,得;…………①

,得;…………②

①②两式相加,得.

.

检验:

时, .

存在非零常数,对任意

为线周期函数.

综上, .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】有一种新型的洗衣液,去污速度特别快.已知每投放个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度(克/升)随着时间 (分钟) 变化的函数关系式近似为其中.根据经验,当水中洗衣液的浓度不低于4(/升)时,它才能起到有效去污的作用.

1若投放个单位的洗衣液,3分钟时水中洗衣液的浓度为4 (/),的值

2)若投放4个单位的洗衣液,则有效去污时间可达几分钟?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E的右焦点与抛物线y2=4x的焦点重合,点M 在椭圆E上. (Ⅰ)求椭圆E的标准方程;
(Ⅱ)设P(﹣4,0),直线y=kx+1与椭圆E交于A,B两点,若直线PA,PB关于x轴对称,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图,某地一天从6时到14时的温度变化曲线近似满足函数yAsin(ωxφ)+b. (0 <φ < π)

(1)求这段时间的最大温差;

(2)写出这段曲线的函数解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数满足: ,且该函数的最小值为1.

(1)求此二次函数的解析式;

(2)若函数的定义域为(其中),问是否存在这样的两个实数 ,使得函数的值域也为?若存在,求出 的值;若不存在,请说明理由.

(3)若对于任意的,总存在使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国个人所得税法》规定,公民全月工资、薪金(扣除三险一金后)所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额个人所得税计算公式:应纳税额=工资-三险一金=起征点. 其中,三险一金标准是养老保险8%、医疗保险2%、失业保险1%、住房公积金8%,此项税款按下表分段累计计算:

(1)某人月收入15000元(未扣三险一金),他应交个人所得税多少元?

(2)某人一月份已交此项税款为1094元,那么他当月的工资(未扣三险一金)所得是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=sin2x的图象向右平移φ(0<φ< )个单位后得到函数g(x)的图象,若函数g(x)在区间[0, ]上单调递增,则φ的取值范围是(
A.[ ]
B.[
C.[ ]
D.[ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 函数.

(1)求在区间上的最大值和最小值

(2)若 的值

3)若函数在区间上是单调递增函数求正数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数是定义在实数集上的奇函数,并且在区间上是单调递增的函数.

(1)研究并证明函数在区间上的单调性;

(2)若实数满足不等式,求实数的取值范围.

查看答案和解析>>

同步练习册答案