精英家教网 > 高中数学 > 题目详情
设z=2x-y,其中x,y满足
x-y+1≥0
x+y-2≥0
x≤2
,则z的取值范围是
 
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用z的几何意义,求出z的最大值和最小值,即可得到结论.
解答: 解:作出不等式组对应的平面区域如图:
由z=2x-y得y=2x-z,
平移直线y=2x-z,由图象可知当直线y=2x-z经过点A时,直线的截距最大,
此时z最小,经过点B时,直线的截距最小,此时z最大.
x-y+1=0
x+y-2=0
,解得
x=
1
2
y=
3
2

即A(
1
2
3
2
),此时zmin=2×
1
2
-
3
2
=-
1
2

x=2
x+y-2=0
,解得
x=2
y=0

即B(2,0),此时zmax=2×2=4,
-
1
2
≤z≤4

故答案为:[-
1
2
,4]
点评:本题主要考查线性规划的应用,利用数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,三棱锥P-ABC中,AB=AC=2
10
,BC=4,PC=2
11
,点P在平面ABC内的射影恰为△ABC的重心G,M为侧棱AP上一动点.
(1)求证:平面PAG⊥平面BCM;
(2)当M为AP的中点时,求直线BM与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下面三个命题:
①命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②不等式|x-3|+|x-1|≤2的解集是[1,3];
③正方体的内切球与其外接球的表面积之比为1:3;
其中所有正确命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知△ABC内接于圆O,点D在OC的延长线上,AD是⊙O的切线,若∠B=30°,AC=3,则OD的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,圆O的直径AB=5,C是圆上一点,过点A的圆O切线交BC的延长线于点D,且AD=
20
3
,则BC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知变量x,y满足约束条件
y-1≤0
x+y≥0
x-y-2≤0
,则z=x+2y的最大值为(  )
A、6B、5C、4D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

若双曲线
y2
m2
-x2=1的渐近线方程为y=±
2
x,则双曲线离心率为(  )
A、
2
B、3
C、
6
2
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,内外两个椭圆的离心率相同,从外层椭圆顶点向内层椭圆引切线AC,BD,设内层椭圆方程为
x2
a2
+
y2
b2
=1(a>b>0),若直线AC与BD的斜率之积为-
1
4
,则椭圆的离心率为(  )
A、
1
2
B、
2
2
C、
3
2
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是等差数列,数列{bn}是等比数列,且对任意的n∈N*,都有a1b1+a2b2+a3b3+…+anbn=n•2n+3
(Ⅰ)若{bn}的首项为4,公比为2,求数列{an+bn}的前n项和Sn
(Ⅱ)若an=4n+4,试探究:数列{bn}中是否存在某一项,它可以表示为该数列中其它r(r∈N,r≥2)项的和?若存在,请求出该项;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案