精英家教网 > 高中数学 > 题目详情
已知在平面直角坐标系xOy中,直线l的参数方程是
x=
2
2
t
y=
2
2
t+4
2
(t是参数),以原点O为极点,x轴正半轴为极轴建立极坐标,曲线C的极坐标方程ρ=2cos(θ+
π
4
)

(Ⅰ)判断直线l与曲线C的位置关系;
(Ⅱ)设M为曲线C上任意一点,求x+y的取值范围.
考点:简单曲线的极坐标方程,参数方程化成普通方程
专题:坐标系和参数方程
分析:(Ⅰ)由直线的参数方程消去t得直线的直角坐标方程,化圆的极坐标方程为直角坐标方程,再由圆心到直线的距离与圆的半径的关系得到直线与圆的位置关系;
(Ⅱ)设出曲线C上的点的参数方程,由x+y=sinθ+cosθ,利用两角和的正弦化简后可得x+y的取值范围.
解答: 解:(Ⅰ)由
x=
2
2
t
y=
2
2
t+4
2
,消去t得:y=x+4
2

ρ=2cos(θ+
π
4
)
,得ρ=2cosθcos
π
4
-2sinθsin
π
4
,即ρ=
2
cosθ-
2
sinθ

ρ2=
2
ρcosθ-
2
ρsinθ
,即x2-
2
x+y2+
2
y=0

化为标准方程得:(x-
2
2
)2+(y+
2
2
)2=1

圆心坐标为(
2
2
,-
2
2
)
,半径为1,圆心到直线x-y+4
2
=0的距离d=
|
2
2
+
2
2
+4
2
|
2
=5
>1.
∴直线l与曲线C相离;
(Ⅱ)由M为曲线C上任意一点,可设
x=
2
2
+cosθ
y=-
2
2
+sinθ

则x+y=sinθ+cosθ=
2
sin(θ+
π
4
)

∴x+y的取值范围是[-
2
2
]
点评:本题考查了简单曲线的极坐标方程,考查了极坐标与直角坐标的互化,考查了由点到直线的距离判断直线和圆的位置关系,训练了圆的参数方程的应用,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinxcosx-cos2x+
1
2

(1)求f(x)的单调递增区间
(2)求f(x)在区间][0,
π
2
]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,D为BC上一点,BD=
1
2
DC,∠ADB=120°,AD=2,若△ADC的面积为3-
3
,则∠ABC=(  )
A、30°B、60°
C、15°D、45°

查看答案和解析>>

科目:高中数学 来源: 题型:

圆柱的侧面展开图是一个边长为6π和4π的矩形,则该圆柱的底面积是(  )
A、24π2
B、36π2和16π2
C、36π
D、9π和4π

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明:当n为整数时,1+2+22+…+2n-1=2n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设正项等比数列{an},已知a2=2,a3a4a5=29
(1)求首项a1和公比q的值;
(2)若数列{bn}满足bn=
1
n
[lga1+lga2+…lgan-1+lg(kan)],问是否存在正数k,使数列{bn}为等差数列?若存在,求k的值.若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn是等比数列{an}的前n项和,S3+2,S9+2,S6+2成等差数列,且a2+a5=4.
(Ⅰ)求数列{an}的公比q;
(Ⅱ)设bn=log2|an|,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的各项均为正数,且其前n项和满足2Sn=an2+an(n∈N*).
(1)证明:数列{an}是等差数列;
(2)设bn=
1
anan+1
,求数列{bn}的前n项和Tn,求证:Tn≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:

求该几何体的体积.

查看答案和解析>>

同步练习册答案