精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3
sinxcosx-cos2x+
1
2

(1)求f(x)的单调递增区间
(2)求f(x)在区间][0,
π
2
]上的值域.
考点:三角函数中的恒等变换应用,正弦函数的图象
专题:三角函数的求值,三角函数的图像与性质
分析:(1)直接利用三角函数的恒等变换,把三角函数变形成正弦型函数.进一步求出函数的单调区间.
(2)直接利用三角函数的定义域求出函数的值域.
解答: 解:(1)f(x)=
3
sinxcosx-cos2x+
1
2

=
3
2
sin2x-
1
2
cos2x
=sin(2x-
π
6

令:2kπ-
π
2
≤2x-
π
6
≤2kπ+
π
2
(k∈Z),
解得kπ-
π
6
≤x≤kπ+
π
3
(k∈Z)
∴f(x)的单调递增区间为:[kπ-
π
6
,kπ+
π
3
](k∈Z)
(2)∵x∈[0,
π
2
],
∴2x-
π
6
∈[-
π
6
6
],
∴-
1
2
≤sin(2x-
π
6
)≤1,
∴f(x)在区间[0,
π
2
]上的值域为:[-
1
2
,1].
点评:本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的单调性的应用,利用函数的定义域求三角函数的值域.属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过抛物线y2=4x的焦点F的直线l交于抛物线于A,B两点,若AB中点M到抛物线的准线距离为6,则线段AB的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=4,P为线段B1D1上一点.
(Ⅰ)求证:AC⊥BP;
(Ⅱ)当P为线段B1D1的中点时,求三棱锥A-PBC的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在平面α内有一边长为a的等边△ABC,在△ABC中,DE∥BC,沿DE将△ABC折起,使它和△ABC所在半平面成60°的二面角,问直线DE取在何处,折起后的三角形顶点A(可记A′)到BC边的距离最短,最短距离是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中有大小互不相同的4个红球和6个白球,从中取出4个球.
(1)若取出的球必须有两种颜色,则有多少种不同的取法?
(2)若取出的红球个数不少于白球个数,则有多少种不同的取法?
(3)取出1个红球记1分,取出1个白球记2分,若取出4球的总分不低于5分,则有多少种不同的取法?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}(n∈N*,1≤n≤46)满足a1=a,an+1-an=
d,1≤n≤15
1,16≤n≤30
1
d
,31≤n≤45
其中d≠0,n∈N*
(1)当a=1时,求a46关于d的表达式,并求a46的取值范围;
(2)设集合M={b|b=ai+aj+ak,i,j,k∈N*,1≤i<j<k≤16}.
①若a=
1
3
,d=
1
4
,求证:2∈M;
②是否存在实数a,d,使
1
8
,1,
53
40
都属于M?若存在,请求出实数a,d;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知以下四个函数:①y=kx(k∈R);②y=xn(n为奇数);③y=x2cosx;④y=2x+sinx.其中图象可以平分圆O:x2+y2=1的面积的函数个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

圆锥的轴截面是等腰直角三角形,侧面积是16
2
π,则圆锥的体积是(  )
A、
64π
3
B、
128π
3
C、64π
D、128
2
π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在平面直角坐标系xOy中,直线l的参数方程是
x=
2
2
t
y=
2
2
t+4
2
(t是参数),以原点O为极点,x轴正半轴为极轴建立极坐标,曲线C的极坐标方程ρ=2cos(θ+
π
4
)

(Ⅰ)判断直线l与曲线C的位置关系;
(Ⅱ)设M为曲线C上任意一点,求x+y的取值范围.

查看答案和解析>>

同步练习册答案