精英家教网 > 高中数学 > 题目详情
设全集为R,A={x|1≤x<3},B={x|3x-7≥8-2x},C={x|2<x<10}.
(1)求A∩B,B∪C;
(2)(∁RA)∩B.
考点:交、并、补集的混合运算
专题:集合
分析:先解出集合B,根据结合的运算解答即可.
解答: 解:(1)∵A={x|1≤x<3},B={x|x≥3},C={x|2<x<10},
∴A∩B=∅,B∪C={x|x>2};
(2)∵全集为R,A={x|1≤x<3},B={x|x≥3},
∴(∁RA)∩B={x|x<1或x≥3}∩{x|x≥3}={x|x≥3}.
故答案为:(1)A∩B=∅,B∪C={x|x>2};(2)(∁RA)∩B={x|x≥3}.
点评:本题考查集合的交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

命题“?x0∈R,2x0≤0”的否定是(  )
A、?x0∈R,2x0>0
B、?x0∉R,2x0≤0
C、?x∈R,2x>0
D、?x∈R,2x≤0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}满足a1=a(0<a<1),且an+1=
an
1+an
(n∈N*
(1)求a2,a3,a4
(2)求证:数列{
1
an
}为等差数列;
(3)求证:
a1
2
+
a2
3
+…+
an
n+1
<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

己知集合A={x|-1<x<3},集合B={y|y=
1
x
,x∈(-3,0)∪(0,1)},集合C={x|2x2+mx-8<0}.
(1)求A∩B、A∪(∁RB)(R为全集);
(2)若(A∩B)⊆C,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科)如图,在棱长为4的正方体ABCD-A1B1C1D1中,P、Q分别是棱A1D1和AD的中点,R为PB的中点.
(Ⅰ)求证:QR∥平面PCD;
(Ⅱ)求直线BQ与平面CQR所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)计算:lg2+lg5+(
1
2
-2+
(π-2)2

(Ⅱ)已知
sinθ+cosθ
2sinθ-cosθ
=3,求tanθ.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)是R上的偶函数,且当x>0时,函数解析式为f(x)=
2
x
-1,
(Ⅰ)求f(-1)的值;  
(Ⅱ)求当x<0时,函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex(x2+ax-a+1),其中a是常数.
(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若f(x)在定义域内是单调递增函数,求a的取值范围;
(Ⅲ)若关于x的方程f(x)=ex+k在[0,+∞)上有两个不相等的实数根,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若a>0,b>0,且a+b=1.求证:
(Ⅰ)ab≤
1
4

(Ⅱ)
1
a+1
+
1
b+1
4
3

查看答案和解析>>

同步练习册答案