精英家教网 > 高中数学 > 题目详情
己知集合A={x|-1<x<3},集合B={y|y=
1
x
,x∈(-3,0)∪(0,1)},集合C={x|2x2+mx-8<0}.
(1)求A∩B、A∪(∁RB)(R为全集);
(2)若(A∩B)⊆C,求m的取值范围.
考点:交、并、补集的混合运算,集合的包含关系判断及应用,集合关系中的参数取值问题
专题:集合
分析:(1)求出集合B中y的范围确定出B,根据全集R求出B的补集,找出A与B的交集,求出A与B补集的并集即可;
(2)根据A与B的交集为C的子集,确定出m的范围即可.
解答: 解:(1)由B中y=
1
x
,x∈(-3,0)∪(0,1),得到B∈(-∞,-
1
3
)∪(1,+∞),
∵A=(-1,3),
∴A∩B=(-1,-
1
3
)∪(1,3),
∵全集为R,
∴∁RB=[-
1
3
,-1],
则A∪(∁RB)=(-1,3);
(2)令f(x)=2x2+mx-8,
∵C={x|2x2+mx-8<0},A∩B=(-1,-
1
3
)∪(1,3),且(A∩B)⊆C,
f(-1)≤0
f(3)≤0

解得:-6≤m≤-
10
3
点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=3x与y=log3x的图象关于下列那种图形对称(  )
A、x轴B、y轴
C、直线y=xD、原点中心对称

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α,β是三角形的两个内角,则以下结论哪几个是正确的?并说明理由.
①sinα+sinβ≥sin(α+β);
②cosα+cosβ≥cos(α+β);
③sinα+sinβ≥cos(α+β);
④cosα+cosβ≥sin(α+β).

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科)已知抛物线C:y2=2px(p>0)经过点(2,4),A,B为抛物线C上异于坐标原点O的两个动点.
(Ⅰ)求抛物线C的方程;
(Ⅱ)若线段AB的中点坐标为(2,1),求直线AB的方程;
(Ⅲ)当
OA
OB
=0时,求证:直线AB恒过定点(2p,0).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-2x,求f(x)在x<0时的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=ex,f(x)=
-g(x)+a
e•g(x)+b
,f(x)是定义在R上的奇函数.
(1)求a,b的值;
(2)若关于t的方程f(2t2-mt)+f(1-t2)=0有两个根α、β,且α>0,1<β<2,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集为R,A={x|1≤x<3},B={x|3x-7≥8-2x},C={x|2<x<10}.
(1)求A∩B,B∪C;
(2)(∁RA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(
1
x
)=
x
1-x
,x≠0,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2px(p>0)经过点(2,4),A,B为抛物线C上异于坐标原点O的两个动点,且满足
OA
OB
=0.
(Ⅰ)求抛物线C的方程;
(Ⅱ)求证:直线AB恒过定点(2p,0);
(Ⅲ)若线段AB的中垂线经过点(16,0),求线段AB的长.

查看答案和解析>>

同步练习册答案