精英家教网 > 高中数学 > 题目详情
已知抛物线C:y2=2px(p>0)经过点(2,4),A,B为抛物线C上异于坐标原点O的两个动点,且满足
OA
OB
=0.
(Ⅰ)求抛物线C的方程;
(Ⅱ)求证:直线AB恒过定点(2p,0);
(Ⅲ)若线段AB的中垂线经过点(16,0),求线段AB的长.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(Ⅰ)由抛物线C:y2=2px(p>0)经过点(2,4),能求出抛物线C的方程.
(Ⅱ)设A(
y12
2p
,y1),B(
y22
2p
,y2),则
y12y22
4p2
+y1y2=0
,从而求出AB方程:y-y1=
2p
y1+y2
(x-
y12
2p
),由此能证明AB过定点(2p,0).
(Ⅲ)由(Ⅱ)知AB过点(8,0),线段AB的中垂线经过点(16,0),从而AB垂直于x轴,由此能求出线段AB的长.
解答: (Ⅰ)解:∵抛物线C:y2=2px(p>0)经过点(2,4),
∴4p=16,解得p=4,
∴抛物线C的方程为y2=8x.
(Ⅱ)证明:设A(
y12
2p
,y1),B(
y22
2p
,y2),
OA
OB
=0,∴OA⊥OB,
y12y22
4p2
+y1y2=0

∴y1y2=-4p2
kAB=
y1-y2
y12
2p
-
y22
2p
=
2p
y1+y2

∴AB方程:y-y1=
2p
y1+y2
(x-
y12
2p

当y=0时,x=2p,
∴AB过定点(2p,0).
(Ⅲ)解:由(Ⅱ)知AB过点(8,0),
∵线段AB的中垂线经过点(16,0),
∴AB垂直于x轴,
∴x=8于y2=8x交于A,B两点,
∴A(8,-8),B(8,8),
∴线段AB的长为16.
点评:本题考查抛物线方程的求法,考查弦长的求法,考查直线过定点的证明,解题时要认真审题,注意函数与方程思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

己知集合A={x|-1<x<3},集合B={y|y=
1
x
,x∈(-3,0)∪(0,1)},集合C={x|2x2+mx-8<0}.
(1)求A∩B、A∪(∁RB)(R为全集);
(2)若(A∩B)⊆C,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex(x2+ax-a+1),其中a是常数.
(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若f(x)在定义域内是单调递增函数,求a的取值范围;
(Ⅲ)若关于x的方程f(x)=ex+k在[0,+∞)上有两个不相等的实数根,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M是圆C:(x+1)2+y2=8上的动点,定点D(1,0),点P在直线DM上,点N在直线CM上,且满足
DM
=2
DP
NP
DM
=0,动点N的轨迹为曲线E.
(Ⅰ)求曲线E的方程;
(Ⅱ)若AB是曲线E的长为2的动弦,O为坐标原点,求△AOB面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cosα-sinα=
3
2
5
17π
12
<α<
4
,求sin2α和tan(
π
4
+α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是奇函数,且当x>0时,f(x)=x|x-2|,求x<0时,f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

若a>0,b>0,且a+b=1.求证:
(Ⅰ)ab≤
1
4

(Ⅱ)
1
a+1
+
1
b+1
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

求值:sin2
14π
3
+cos3π+tan
4
-cos2(-
11π
6
)+sin(-
6
).

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={1,2,4},B={2,6},则A∩B=
 

查看答案和解析>>

同步练习册答案