精英家教网 > 高中数学 > 题目详情

设变量x,y满足|x-2|+|y-2|≤1,则数学公式的最大值为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    -数学公式
  4. D.
    数学公式
B
分析:先由约束条件画出可行域,再求出可行域各个角点的坐标,将坐标逐一代入目标函数,验证即得答案.
解答:解:如图即为满足不等|x-2|+|y-2|≤1的可行域,是一个正方形,
得A(1,2),B(2,1),C(3,2),D(2,3).
当x=1,y=2时,则=
当x=2,y=1时,则=-
当x=3,y=2时,则=-
当x=2,y=3时,则=
有最大值
故选B.
点评:在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域?②求出可行域各个角点的坐标?③将坐标逐一代入目标函数?④验证,求出最优解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设变量x,y满足
x+y≤1
x-y≤1
x≥0
,则x+2y的最大值和最小值分别为(  )
A、1,-1B、2,-2
C、1,-2D、2,-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•九江一模)设变量x,y满足|x-2|+|y-2|≤1,则
y-x
x+1
的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•辽宁)设变量x,y满足
x-y≤10
0≤x+y≤20
0≤y≤15
,则2x+3y的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x、y满足
x+y≥1
x-y≥0
2x-y-2≥0
则目标函数z=2x+y的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•唐山二模)设变量x、y满足
x+y≥1
x-y≥0
2x-y-2≤0
,则目标函数z=2x+y的最小值为(  )

查看答案和解析>>

同步练习册答案