分析 首先我们确定四面体的顶点和各棱的中点共10个点.可以构成的三棱锥个数(在这10点中取4个不共面的点的情况),每个三棱锥中有3对异面直线,则可得这10点构成的直线中,异面直线的对数.
解答 解:首先我们确定四面体的顶点和各棱的中点共10个点.
可以构成的三棱锥个数(在这10点中取4个不共面的点的情况)
取出的4点不共面比取出的4点共面的情形要复杂,故采用间接法:
从10个点中任取4个点有C104种取法,
其中4点共面的情况有三类.
第一类,取出的4个点位于四面体的同一个面上,有4C64种;
第二类,取任一条棱上的3个点及该棱对棱的中点,这4点共面,有6种;
第三类,由中位线构成的平行四边形(其两组对边分别平行于四面体相对的两条棱),
它的4顶点共面,有3种.
以上三类情况不合要求应减掉,∴不同的取法共有C104-4C64-6-3=141种.
即这10个点可以构成141个三棱锥,每个三棱锥中有3对异面直线,
所以则由这10点构成的直线中,共有141×3=423对异面直线.
故答案为:423
点评 本题考查排列组合的解决简单实际问题,分类加法计数原理、分步乘法计数原理,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 5 | C. | 6 | D. | $3+2\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 19 | B. | 20 | C. | 21 | D. | 22 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 96 | B. | 120 | C. | 132 | D. | 240 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [3,+∞) | B. | [2,3] | C. | (0,2]∪[3,+∞) | D. | (0,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({\frac{1}{2},+∞})∪\left\{{\frac{ln2}{2}}\right\}$ | B. | $[{\frac{ln2}{2},+∞})$ | C. | $({0,\frac{1}{2}})∪\left\{{\frac{ln2}{2}}\right\}$ | D. | $[{\frac{ln2}{2},\frac{1}{2}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com