14£®ÒÑÖªµ×ÃæÎª±ß³¤Îª2µÄÕý·½ÐΣ¬²àÀⳤΪ1µÄÖ±ËÄÀâÖùABCD-A1B1C1D1ÖУ¬PÊÇÃæA1B1C1D1Éϵ͝µã£®¸ø³öÒÔÏÂËĸö½áÂÛÖУ¬ÕýÈ·µÄ¸öÊýÊÇ£¨¡¡¡¡£©
¢ÙÓëµãD¾àÀëΪ$\sqrt{3}$µÄµãPÐγÉÒ»ÌõÇúÏߣ¬Ôò¸ÃÇúÏߵij¤¶ÈÊÇ$\frac{¦Ð}{2}$£»
¢ÚÈôDP¡ÎÃæACB1£¬ÔòDPÓëÃæACC1A1Ëù³É½ÇµÄÕýÇÐֵȡֵ·¶Î§ÊÇ$[{\frac{{\sqrt{6}}}{3}£¬+¡Þ}£©$£»
¢ÛÈô$DP=\sqrt{3}$£¬ÔòDPÔÚ¸ÃËÄÀâÖùÁù¸öÃæÉϵÄÕýͶӰ³¤¶ÈÖ®ºÍµÄ×î´óֵΪ$6\sqrt{2}$£®
A£®0B£®1C£®2D£®3

·ÖÎö ¢ÙÓëµãD¾àÀëΪ$\sqrt{3}$µÄµãPÐγÉÒÔD1ΪԲÐÄ£¬°ë¾¶Îª$\sqrt{2}$µÄ$\frac{1}{4}$Ô²»¡MN£¬ÀûÓû¡³¤¹«Ê½£¬¿ÉµÃ½áÂÛ£»
¢Úµ±PÔÚA1£¨»òC1£©Ê±£¬DPÓëÃæACC1A1Ëù³É½Ç¡ÏDA1O£¨»ò¡ÏDC1O£©µÄÕýÇÐֵΪ$\frac{{\sqrt{6}}}{3}$×îС£¬µ±PÔÚO1ʱ£¬DPÓëÃæACC1A1Ëù³É½Ç¡ÏDO1OµÄÕýÇÐֵΪ$\sqrt{2}$×î´ó£¬¿ÉµÃÕýÇÐֵȡֵ·¶Î§ÊÇ$[{\frac{{\sqrt{6}}}{3}£¬\sqrt{2}}]$£»
¢ÛÉèP£¨x£¬y£¬1£©£¬Ôòx2+y2+1=3£¬¼´x2+y2=2£¬¿ÉµÃDPÔÚǰºó¡¢×óÓÒ¡¢ÉÏÏÂÃæÉϵÄÕýͶӰ³¤£¬¼´¿ÉÇó³öÁù¸öÃæÉϵÄÕýͶӰ³¤¶ÈÖ®ºÍ£®

½â´ð ½â£ºÈçͼ£¬¢Ù´íÎó£¬ÓëµãD¾àÀëΪ$\sqrt{3}$µÄµãPÐγÉÒÔD1ΪԲÐÄ£¬°ë¾¶Îª$\sqrt{2}$µÄ$\frac{1}{4}$Ô²»¡MN£¬³¤¶ÈΪ$\frac{1}{4}•2¦Ð•\sqrt{2}$=$\frac{\sqrt{2}}{2}¦Ð$£»
¢Ú´íÎó£¬ÒòÎªÃæA1DC1¡ÎÃæACB1£¬ËùÒÔµãP±ØÐëÔÚÃæ¶Ô½ÇÏßA1C1ÉÏÔ˶¯£¬µ±PÔÚA1£¨»òC1£©Ê±£¬DPÓëÃæACC1A1Ëù³É½Ç¡ÏDA1O£¨»ò¡ÏDC1O£©µÄÕýÇÐֵΪ$\frac{{\sqrt{6}}}{3}$×îС£¬µ±PÔÚO1ʱ£¬DPÓëÃæACC1A1Ëù³É½Ç¡ÏDO1OµÄÕýÇÐֵΪ$\sqrt{2}$×î´ó£¬ËùÒÔÕýÇÐֵȡֵ·¶Î§ÊÇ$[{\frac{{\sqrt{6}}}{3}£¬\sqrt{2}}]$£»
¢ÛÕýÈ·£¬ÉèP£¨x£¬y£¬1£©£¬Ôòx2+y2+1=3£¬¼´x2+y2=2£¬DPÔÚǰºó¡¢×óÓÒ¡¢ÉÏÏÂÃæÉϵÄÕýͶӰ³¤·Ö±ðΪ$\sqrt{{y^2}+1}£¬\sqrt{{x^2}+1}£¬\sqrt{{x^2}+{y^2}}$£¬ËùÒÔÁù¸öÃæÉϵÄÕýͶӰ³¤¶ÈÖ®ºÍΪ$2£¨\sqrt{{y^2}+1}+\sqrt{{x^2}+1}+\sqrt{2}£©¡Ü2£¨2\sqrt{\frac{{{y^2}+1+{x^2}+1}}{2}}+\sqrt{2}£©=6\sqrt{2}$£¬µ±ÇÒ½öµ±PÔÚO1ʱȡµÈºÅ£®
¹ÊÑ¡B£®

µãÆÀ ±¾ÌâÒÔÃüÌâµÄÕæ¼ÙÅжÏÎªÔØÌ壬¿¼²éÁ˹켣ÎÊÌâ¡¢ÏßÃæ½Ç¡¢ÕýͶӰµÈ֪ʶµã£¬×ÛºÏÐÔÇ¿£¬ÄѶȽϴó£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖª£¨x-2$\root{3}{x}$£©nµÄÕ¹¿ªÊ½ÖÐËùÓжþÏîʽϵÊýÖ®ºÍΪ1024£®
£¨1£©ÇóÕ¹¿ªÊ½µÄËùÓÐÓÐÀíÏ
£¨2£©Çó£¨1-x£©3+£¨1-x£©4+¡­£¨1-x£©nÕ¹¿ªÊ½ÖÐx2ÏîµÄϵÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Èçͼ£¬Õý·½ÌåABCD-A1B1C1D1µÄÀⳤΪ1£¬NΪCD1Öе㣬MΪÏß¶ÎBC1Éϵ͝µã£¬£¨M²»ÓëB£¬C1ÖØºÏ£©ÓÐËĸöÃüÌ⣺
¢ÙCD1¡ÍÆ½ÃæBMN£»
¢ÚMN¡ÎÆ½ÃæAB1D1£»
¢ÛÆ½ÃæAA1CC1¡ÍÆ½ÃæBMN£»
¢ÜÈýÀâ×¶D-MNCµÄÌå»ýÓÐ×î´óÖµ£®
ÆäÖÐÕæÃüÌâµÄÐòºÅÊÇ¢Ú¢Û£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖª¦Á-l-¦ÂΪ60¡ã£¬¦ÂÄÚÒ»µãPÔÚ¦ÁÄÚµÄÉäӰΪP¡ä£¬Èô|PP¡ä|=2£¬ÔòP¡äµ½¦ÂµÄ¾àÀëÊÇ£¨¡¡¡¡£©
A£®2B£®$\sqrt{3}$C£®1D£®$\frac{\sqrt{3}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ËıßÐÎABCDÊÇÕý·½ÐΣ¬¡÷PABÓë¡÷PAD¾ùÊÇÒÔAΪֱ½Ç¶¥µãµÄµÈÑüÖ±½ÇÈý½ÇÐΣ¬µãFÊÇPBµÄÖе㣬µãEÊDZßBCÉϵÄÈÎÒâÒ»µã£®
£¨1£©ÇóÖ¤£ºAF¡ÍEF£»    
£¨2£©Çó¶þÃæ½ÇA-PC-BµÄÆ½Ãæ½Ç£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªf1£¨x£©=|3x-1|£¬f2£¨x£©=|a•3x-9|£¬x¡ÊR£¬ÇÒf£¨x£©=$\left\{\begin{array}{l}{{f}_{1}£¨x£©£¬{f}_{1}£¨x£©¡Ü{f}_{2}£¨x£©}\\{{f}_{2}£¨x£©£¬{f}_{1}£¨x£©£¾{f}_{2}£¨x£©}\end{array}\right.$
£¨1£©µ±a=1ʱ£¬Çëд³öf£¨x£©µÄµ¥µ÷µÝ¼õÇø¼ä£»
£¨2£©µ±2¡Üa£¼9ʱ£¬Éèf£¨x£©=f2£¨x£©¶ÔÓ¦µÄ×Ô±äÁ¿È¡ÖµÇø¼äµÄ³¤¶ÈΪl£¨±ÕÇø¼ä[m£¬n]µÄ³¤¶È¶¨ÒåΪn-m£©Çól¹ØÓÚaµÄ±í´ïʽ£¬²¢Çó³ölµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬ÔÚËÄÀâ×¶P-ABCDÖУ¬PD¡Íµ×ÃæABCD£¬µ×ÃæABCDΪÕý·½ÐΣ¬PD=DC£¬E¡¢F·Ö±ðÔÚAB¡¢PBÉÏ£¬ÇÒBE£ºAE=1£º2£¬PF£ºBF=2£º1£®
£¨1£©ÇóÆ½ÃæDEFÓëÆ½ÃæPBCËù³É¶Û¶þÃæ½ÇµÄÓàÏÒÖµ£»
£¨2£©ÔÚÆ½ÃæPADÄÚÊÇ·ñ´æÔÚÒ»µãG£¬Ê¹GF¡ÍÆ½ÃæPCB£¿Èô´æÔÚ£¬Çó³öËüµÄ×ø±ê£¬Èô²»´æÔÚ˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®±ß³¤Îª2µÄÕý·½ÐÎABCDÖУ¬E¡¢F·Ö±ðΪCD¡¢ADÖе㣬AEÓëBF½»ÓÚµãM£®ÏÖÈý½ÇÐÎABFºÏBF·­ÕÛ¡¢ËıßÐÎDFMEÑØME·­ÕÛ£¬ÔòÔÚÈÎÒâ·­ÕÛÖУ¬A¡¢DÁ½µã¾àÀë×îСֵΪ$\frac{2\sqrt{10}-2\sqrt{5}}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®2015Äê7ÔÂ9ÈÕ21ʱ15·Ö£¬Ì¨·ç¡°Á«»¨¡±ÔÚÎÒ¹ú¹ã¶«Ê¡Â½·áÊм׶«ÕòÑØº£µÇ½£¬Ôì³É165.17ÍòÈËÊÜÔÖ£¬5.6ÍòÈ˽ô¼±×ªÒư²Öã¬288¼ä·¿Îݵ¹Ëú£¬46.5ǧ¹«ÇêÅ©ÌïÊÜÔÖ£¬Ö±½Ó¾­¼ÃËðʧ12.99ÒÚÔª£¬¾àÀë½·áÊÐ222ǧÃ×µÄ÷ÖÝÒ²Êܵ½ÁĘ̈·çµÄÓ°Ï죬ÊÊ·êÊî¼Ù£¬Ð¡Ã÷µ÷²éÁË÷ÖÝÄ³Ð¡ÇøµÄ50»§¾ÓÃñÓÉÓŲ́·çÔì³ÉµÄ¾­¼ÃËðʧ£¬½«ÊÕ¼¯µÄÊý¾Ý·Ö³É[0£¬2000]£¬£¨2000£¬4000]£¬£¨4000£¬6000]£¬£¨6000£¬8000]£¬£¨8000£¬10000]Îå×飬²¢×÷³öÈçͼƵÂÊ·Ö²¼Ö±·½Í¼£º
£¨1£©ÊÔ¸ù¾ÝƵÂÊ·Ö²¼Ö±·½Í¼¹À¼ÆÐ¡ÇøÆ½¾ùÿ»§¾ÓÃñµÄƽ¾ùËðʧ£¨Í¬Ò»×éÖеÄÊý¾ÝÓøÃ×éÇø¼äµÄÖеãÖµ×÷´ú±í£©£»
£¨2£©Ð¡Ã÷Ïò°à¼¶Í¬Ñ§·¢³ö³«Ò飬Ϊ¸ÃÐ¡Çø¾ÓÃñËð¿î£¬ÏÖ´ÓËðʧ³¬¹ý4000ÔªµÄ¾ÓÃñÖÐËæ»ú³é³ö2»§½øÐоè¿îÔ®Öú£¬Í¶³é³öËðʧ³¬¹ý8000ÔªµÄ¾ÓÃñΪ¦Î»§£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£»
£¨3£©Ì¨·çºóÇøÎ¯»áºÅÕÙ¸ÃÐ¡Çø¾ÓÃñΪ̨·çÖØÔÖÇø¾è¿î£¬Ð¡Ã÷µ÷²éµÄ50»§¾ÓÃñ¾è¿îÇé¿öÈç±í£¬ÔÚ±í¸ñ¿Õ°×ÍâÌîдÕýÈ·Êý×Ö£¬²¢ËµÃ÷ÊÇ·ñÓÐ95%ÒÔÉϵİÑÎÕÈÏΪ¾è¿îÊý¶î¶àÓÚ»òÉÙÓÚ500ÔªºÍ×ÔÉí¾­¼ÃËðʧÊÇ·ñµ½4000ÔªÓйأ¿
¾­¼ÃËðʧ²»³¬¹ý4000Ôª¾­¼ÃËðʧ³¬¹ý4000ÔªºÏ¼Æ
¾è¿î³¬¹ý500Ôª30
Ëð¿î²»³¬¹ý500Ôª6
ºÏ¼Æ
P£¨K2¡Ýk£©0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
¸½£ºÁÙ½çÖµ²Î¿¼¹«Ê½£º${k^2}=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬n=a+b+c+d£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸