分析 (1)由题意可得:2n=1024,解得n,再利用通项公式即可得出.
(2)(1-x)3+(1-x)4+…(1-x)n展开式中x2项的系数=${∁}_{3}^{2}$+${∁}_{4}^{2}$+…+${∁}_{n}^{2}$,再利用组合数的性质即可得出.
解答 解:(1)由题意可得:2n=1024,解得n=10,
$(x-2\root{3}{x})^{10}$的通项公式为:Tr+1=${∁}_{10}^{r}$x10-r$(-2\root{3}{x})^{r}$=(-2)r${∁}_{10}^{r}$${x}^{10-\frac{4r}{3}}$.
当r=0,3,6,9时,可得有理项:x10,$-8{∁}_{10}^{3}$x6,${2}^{6}{∁}_{10}^{6}$x2,-29×10x.
(2)(1-x)3+(1-x)4+…(1-x)n展开式中x2项的系数为:${∁}_{3}^{2}$+${∁}_{4}^{2}$+…+${∁}_{n}^{2}$=${∁}_{3}^{3}+$${∁}_{3}^{2}$+${∁}_{4}^{2}$+…+${∁}_{n}^{2}$=${∁}_{4}^{3}$+${∁}_{4}^{2}$+…+${∁}_{n}^{2}$=${∁}_{n}^{3}$+${∁}_{n}^{2}$=${∁}_{n+1}^{3}$.
点评 本题考查了二项式定理的应用、组合数的性质,考查了分类讨论方法、推理能力与计算能力,属于中档础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | $\frac{13}{25}$ | C. | $\frac{38}{75}$ | D. | $\frac{81}{125}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com