分析 (1)建立空间坐标系,求出点的坐标,利用向量法证明直线垂直.
(2)求出平面的法向量,利用向量法进行求解即可.
解答
解:(Ⅰ)方法1:取AB的中点P,连接DP,CP,
∵△ABD是等腰直角三角形,AD⊥BD,
∴DP⊥AB,∵平面ABC⊥平面ABD,
∴DP⊥平面ABC,
∵EC⊥平面ABC,
∴EC∥DP,
∵△ABC是边长为4的等边三角形,
∴DP=AP=2,
则EC=AP=2.
则四边形DECP是正方形,
则CP⊥DP,则CP⊥平面ABD,
∵AD?平面ABD,
∴PC⊥AD,
则DE⊥AD,
∵AD⊥BD,
∴AD⊥平面BDE,
则AD⊥BE
法2:以OA,OC,OD为x,y,z的正方向建立直角坐标系,![]()
则有:$A({2,0,0}),D({0,0,2}),B({-2,0,0}),E({0,2\sqrt{3},2})$$\overrightarrow{AD}=({-2,0,2}),\overrightarrow{BE}=({-2,2\sqrt{3},2})$
由于$\overrightarrow{AD}•\overrightarrow{BE}=0$,
故AD⊥BE.
(Ⅱ)如图建立坐标系,
则$A({2,0,0}),B({-2,0,0}),C({0,2\sqrt{3},0}),E({0,2\sqrt{3},2}),D({0,0,2})$,
$\overrightarrow{AE}=({-2,2\sqrt{3},2}),\overrightarrow{AC}=({-2,2\sqrt{3},0}),\overrightarrow{BD}=({2,0,2}),\overrightarrow{DE}=({0,2\sqrt{3},0})$,
设平面AEC的法向量为$\overrightarrow{n_1}=({{x_1},{y_1},{z_1}})$,
则$\left\{\begin{array}{l}\overrightarrow{n_1}•\overrightarrow{AE}=0\\ \overrightarrow{n_1}•\overrightarrow{AC}=0\end{array}\right.$所以$\left\{\begin{array}{l}-2{x_1}+2\sqrt{3}{y_1}+2{z_1}=0\\-2{x_1}+2\sqrt{3}{y_1}=0\end{array}\right.$,
令y1=1,则${x_1}=\sqrt{3},{z_1}=0$
所以$\overrightarrow{n_1}=({\sqrt{3},1,0})$,
设平面BDE的法向量为$\overrightarrow{n_2}=({{x_2},{y_2},{z_2}})$
则$\left\{\begin{array}{l}\overrightarrow{n_2}•\overrightarrow{BD}=0\\ \overrightarrow{n_2}•\overrightarrow{DE}=0\end{array}\right.$所以$\left\{\begin{array}{l}2{x_2}+2{z_2}=0\\ 2\sqrt{3}{y_2}=0\end{array}\right.$,令x2=1,则y2=0,z1=-1
所以$\overrightarrow{n_2}=({1,0,-1})$,
所以$cosα=\frac{{\overrightarrow{n_1}•\overrightarrow{n_2}}}{{|{\overrightarrow{n_1}}|•|{\overrightarrow{n_2}}|}}=\frac{{\sqrt{3}}}{{2×\sqrt{2}}}=\frac{{\sqrt{6}}}{4}$.
点评 本题主要考查空间直线垂直和空间二面角的求解,建立空间坐标系,求出平面的法向量,利用向量法是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\sqrt{3}$ | C. | 1 | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com