精英家教网 > 高中数学 > 题目详情
1.如图,在四棱锥P-ABCD中,底面ABCD是等腰梯形,AB∥DC,∠ADC=$\frac{π}{3}$,
PD=PC=CD=2AB=2,PB⊥BC,E为PD的中点.
(1)求证平面PBD⊥平面ABCD; 
(2i)求直线AE与底面ABCD成角的正弦值.

分析 (1)根据条件得出△BCD中,BD=$\sqrt{3}$,运用勾股定理得出:BD⊥BC,最后运用平面与平面垂直的判定定理证明出平面PBD⊥平面ABCD即可;
(2)过点E作EG⊥BD于点G,连接AG,确定∠EAG是AE与底面ABCD所成的角,利用在Rt△BDE,Rt△PAD中求解线段即可得出sin∠EAG=$\frac{EG}{AE}$的值.

解答 证明:(1)∵底面ABCD是等腰梯形,AB∥CD,∠ADC=$\frac{π}{3}$,PD=PC=CD=2AB=2,
∴△BCD中,BD=$\sqrt{3}$,
根据勾股定理得出:BD⊥BC,
又∵PB⊥BC,BD∩PB=B,
∴BC⊥平面PBD,
∵BC?平面ABCD,
∴平面PBD⊥平面ABCD;
(2)过点E作EG⊥BD于点G,连接AG,

∵平面PBD⊥平面ABCD,平面PBD∩平面ABCD=BD,EG?平面PBD,
∴EG⊥平面ABCD,
∴∠EAG是AE与底面ABCD所成的角,
∵底面ABCD是等腰梯形,AB∥CD,∠ADC=$\frac{π}{3}$,PD=PC=CD=2AB=2,
∴BC=1,BD=$\sqrt{3}$,AD=1,PB=$\sqrt{3}$,PD=2,BF=AE=1,
∵在等腰△PBD中,PB=$\sqrt{3}$,PD=2,BD=$\sqrt{3}$,
∴BE=$\sqrt{3-1}$=$\sqrt{2}$,
根据面积得出:$\frac{1}{2}×2×\sqrt{2}$=$\frac{1}{2}×\sqrt{3}×$PO,求解得出;PO=$\frac{\sqrt{6}}{3}$,
在Rt△BDE中,EG=$\frac{1}{2}×\frac{\sqrt{6}}{3}$=$\frac{\sqrt{6}}{6}$,
在Rt△PAD中,AE=1,PD=2,
∴sin∠EAG=$\frac{EG}{AE}$=$\frac{\frac{\sqrt{6}}{6}}{1}$=$\frac{\sqrt{6}}{6}$,
即直线AE与底面ABCD所成的角的正弦值为$\frac{\sqrt{6}}{6}$.

点评 本题考查了空间面面垂直以及直线和平面所成角的计算;利用空间与平面的转化作出线面角,结合三角形的边角关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.数列{an}满足:a1•a2+a2•a3+a3•a4+…+an•an+1=$\frac{{A{n^3}+B{n^2}+2n}}{3}$,且a1=1,a2=2,a3=3.
(1)求A,B值;
(2)证明:{an}是等差数列;
(3)已知bn=2an,若满足ai<m,bj<m,且存在ai,bj使得ai+bj=m成立的所有ai,bj之和记为S(m),则当n≥2,n∈N*时,求S(22)+S(23)+S(24)+…+S(2n).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知抛物线C:y2=2px(p>0)上的一点M(2,y0)到焦点F的距离等于3.
(1)求抛物线C的方程;
(2)若过点D(3,0)的直线l与抛物线C相交于A,B两点,求△ABF面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)定义在R上,若f(x)的图象关于y轴对称,且对任意的实数x恒有f(x+2)=-f(x),则f(2017)的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C的两个焦点分别为F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0),短轴的两个端点分别为B1、B2
(1)若△F1B1B2为等边三角形,求椭圆C的方程;
(2)在(1)的条件下,过点F2的直线l与椭圆C相交于P,Q两点,且l的斜率为1,求|PQ|的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知四棱柱ABCD-A1B1C1D1的底面ABCD为正方形,AA1⊥AC,M、N分别为棱AA1、CC1的中点.
(1)求证:直线MN⊥平面B1BD;
(2)已知AA1=AB,AA1⊥AB,取线段C1D1的中点Q,求二面角Q-MD-N的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,△ABC是边长为4的等边三角形,△ABD是等腰直角三角形,AD⊥BD,平面ABC⊥平面ABD,且EC⊥平面ABC,EC=2.
(1)求证:AD⊥BE
(2)求平面AEC和平面BDE所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,三棱柱ABC-A1B1C1中,CC1⊥平面ABC,AC=BC=$\frac{1}{2}A{A_1}$,D是棱AA1的中点,DC1⊥BD.
(Ⅰ)证明:DC1⊥BC;
(Ⅱ)设AA1=2,A1B1的中点为P,求点P到平面BDC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.长方体ABCD-A1B1C1D1中,AB=3,AD=9,AA1=5,一条绳子沿着长方体的表面从点A拉到点C1,求绳子的最短长度.

查看答案和解析>>

同步练习册答案