分析 (1)根据抛物线的性质求得其准线方程,即可求得椭圆的焦点坐标,跟据离心率的定义,求得可求a和b,求得椭圆方程;
(2)根据椭圆方程,设出直线AB的方程,代入椭圆消去y得到关于x的一元二次方程,利用判别式△>0,求得k的取值范围,根据韦达定理求得x1+x2及x1•x2,分别求得直线OA及OB的斜率,根据斜率之和等于2,即可求得k的值.
解答 解:(1)由抛物线y2=4$\sqrt{3}$x的准线为,x=-$\sqrt{3}$,
∴椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点坐标为(-$\sqrt{3}$,0),
∴c=$\sqrt{3}$,由e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,
∴a=2,
由a2=b2+c2,求得b=1,
故椭圆的方程为:$\frac{{x}^{2}}{4}+{y}^{2}=1$,
设椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且左焦点在抛物线y2=4$\sqrt{3}$x的准线上.
(2)设直线lAB:y=kx+4,A(x1,y1),B(x2,y2),
将直线方程代入椭圆方程整理得:(1+4k2)x2+32kx+60=0,△=(32k)2-240(1+4k2)>0,解得k>$\frac{\sqrt{15}}{2}$或k<-$\frac{\sqrt{15}}{2}$,
由韦达定理可知x1+x2=-$\frac{32k}{1+4{k}^{2}}$,x1•x2=$\frac{60}{1+4{k}^{2}}$,
kOA+kOB=$\frac{{y}_{1}}{{x}_{1}}$+$\frac{{y}_{2}}{{x}_{2}}$=$\frac{(k{x}_{1}+4){x}_{2}+(k{x}_{2}+4){x}_{1}}{{x}_{1}{x}_{2}}$=2k+4×$\frac{{x}_{1}+{x}_{2}}{{x}_{1}{x}_{2}}$=2k+4×$\frac{-32k}{60}$,
∵直线OA,OB的斜率之和等于2,即2k+4×$\frac{-32k}{60}$=2,解得k=-15,
∴直线AB的斜率-15.
点评 本题以椭圆为载体,考查椭圆及抛物线的几何性质,一元二次方程根与系数的关系,考查学生分析解决问题的能力,综合性强,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | $\frac{13}{25}$ | C. | $\frac{38}{75}$ | D. | $\frac{81}{125}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3$\sqrt{3}$cm3 | B. | 6$\sqrt{3}$cm3 | C. | $\frac{15}{2}\sqrt{3}$cm3 | D. | 9$\sqrt{3}$cm3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com