精英家教网 > 高中数学 > 题目详情
17.如图,在直三棱柱ABC-A1B1C1中,平面A1BC⊥侧面A1ABB1,且AA1=AB=2
(1)求证:AB⊥BC;
(2)若AC=2$\sqrt{2}$,求锐二面角A-A1C-B的大小.

分析 (1)取A1B的中点D,连接AD,推导出AD⊥A1B,从而AD⊥平面A1BC,进而AD⊥BC,由线面垂直得AA1⊥BC,由此能证明AB⊥BC.
(2)过点A作AE⊥A1C于点E,连DE,推导出∠AED即为二面角A-A1C-B的一个平面角,由此能求出二面角A-A1C-B的大小.

解答 证明:(1)如右图,取A1B的中点D,连接AD
因AA1=AB,则AD⊥A1B,…1分
由平面A1BC⊥侧面A1ABB1,且平面A1BC∩侧面A1ABB1=A1B,
得AD⊥平面A1BC,…3分
又BC?平面A1BC,
所以AD⊥BC.…4分
因为三棱柱ABC---A1B1C1是直三棱柱,则AA1⊥底面ABC,
所以AA1⊥BC.…5分
又AA1∩AD=A,从而BC⊥侧面A1ABB1
又AB?侧面A1ABB1,故AB⊥BC.…7分
解:(2)过点A作AE⊥A1C于点E,连DE.
由(1)知AD⊥平面A1BC,则AD⊥A1C,且AE∩AD=A,
∴∠AED即为二面角A-A1C-B的一个平面角,…9分
且直角△A1AC中:$AE=\frac{{{A_1}A•AC}}{{{A_1}C}}=\frac{{2×2\sqrt{2}}}{{2\sqrt{3}}}=\frac{{2\sqrt{6}}}{3}$…10分
又$AD=\sqrt{2}$,$∠ADE=\frac{π}{2}$,
∴$sin∠AED=\frac{AD}{AE}=\frac{{\sqrt{2}}}{{\frac{{2\sqrt{6}}}{3}}}=\frac{{\sqrt{3}}}{2}$,…11分
由二面角A-A1C-B为锐二面角,∴$∠AED=\frac{π}{3}$,
即二面角A-A1C-B的大小为$\frac{π}{3}$.…12分.

点评 本题考查异面直线垂直的证明,考查二面角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.复数i+2i2+3i3+4i4+…+2016i2016的虚部是(  )
A.1008B.-1008C.1008iD.-1008i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且左焦点在抛物线y2=4$\sqrt{3}$x的准线上.
(1)求椭圆的方程;
(2)若在y轴上的截距为4的直线l与椭圆分别交于A,B两点,O为坐标原点,且直线OA,OB的斜率之和等于2,求直线AB的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,正方体ABCD-A1B1C1D1的棱长为1,N为CD1中点,M为线段BC1上的动点,(M不与B,C1重合)有四个命题:
①CD1⊥平面BMN;
②MN∥平面AB1D1
③平面AA1CC1⊥平面BMN;
④三棱锥D-MNC的体积有最大值.
其中真命题的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知E,F分别是棱长为1的正方体ABCD-A1B1C1D1的棱BC,CC1的中点,则截面AEFD1与底面ABCD所成二面角的正弦值是$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知α-l-β为60°,β内一点P在α内的射影为P′,若|PP′|=2,则P′到β的距离是(  )
A.2B.$\sqrt{3}$C.1D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.四边形ABCD是正方形,△PAB与△PAD均是以A为直角顶点的等腰直角三角形,点F是PB的中点,点E是边BC上的任意一点.
(1)求证:AF⊥EF;    
(2)求二面角A-PC-B的平面角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别在AB、PB上,且BE:AE=1:2,PF:BF=2:1.
(1)求平面DEF与平面PBC所成钝二面角的余弦值;
(2)在平面PAD内是否存在一点G,使GF⊥平面PCB?若存在,求出它的坐标,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一个几何体的三视图如图所示(单位:cm),则该几何体的表面积是(  )
A.23cm2B.22cm2C.$\frac{23}{2}$cm2D.11cm2

查看答案和解析>>

同步练习册答案