精英家教网 > 高中数学 > 题目详情
12.已知E,F分别是棱长为1的正方体ABCD-A1B1C1D1的棱BC,CC1的中点,则截面AEFD1与底面ABCD所成二面角的正弦值是$\frac{\sqrt{5}}{3}$.

分析 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出截面AEFD1与底面ABCD所成二面角的正弦值.

解答 解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
A(1,0,0),E($\frac{1}{2},1,0$),F(0,1,$\frac{1}{2}$),
$\overrightarrow{AE}$=(-$\frac{1}{2}$,1,0),$\overrightarrow{AF}$=(-1,1,$\frac{1}{2}$),
设平面AEFD1的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AE}=-\frac{1}{2}x+y=0}\\{\overrightarrow{n}•\overrightarrow{AF}=-x+y+\frac{1}{2}z=0}\end{array}\right.$,取x=2,得$\overrightarrow{n}$=(2,1,2),
平面ABCD的法向量$\overrightarrow{m}$=(0,0,1),
截面AEFD1与底面ABCD所成二面角为θ,
cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{2}{3}$,
∴sinθ=$\sqrt{1-(\frac{2}{3})^{2}}$=$\frac{\sqrt{5}}{3}$.
∴截面AEFD1与底面ABCD所成二面角的正弦值是$\frac{\sqrt{5}}{3}$.
故答案为:$\frac{{\sqrt{5}}}{3}$.

点评 本题考查二面角的正弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.若集合A={x|x2-x≥0},则A=(-∞,0]∪[1,+∞);∁R(A)=(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在△ABC中,BD为AC边上的高,BD=1,BC=AD=2,沿BD将△ABD翻折,使得∠ADC=30°,得到几何体B-ACD.

(1)求证:AC⊥BD;
(2)求AB与平面BCD所成角的正切值;
(3)求二面角D-AB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥S-ABCD中,底面ABCD是边长为1的菱形,$∠ABC=\frac{π}{4},SA⊥$底面ABCD,SA=2,M为SA的中点.
(1)求异面直线AB与MD所成角的大小;
(2)求直线AS与平面SCD所成角的正弦值;
(3)求平面SAB与平面SCD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在一个正方体ABCD-A1B1C1D1中,P为正方形A1B1C1D1四边上的动点,O为底面正方形ABCD的中心,M,N分别为AB,CD的中点,点Q为平面SKABCD内一点,线段D1Q与OP互相平分,则满足$\overrightarrow{MQ}$=λ$\overrightarrow{MN}$的实数λ的值有2个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在直三棱柱ABC-A1B1C1中,平面A1BC⊥侧面A1ABB1,且AA1=AB=2
(1)求证:AB⊥BC;
(2)若AC=2$\sqrt{2}$,求锐二面角A-A1C-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,在边长为1的正方形组成的网格中,画出的是一个几何体的三视图,则该几何体的体积是(  )
A.9B.$\frac{27}{2}$C.18D.27

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的表面积为(  )
A.2(1+$\sqrt{2}$+$\sqrt{3}$)B.2(1+2$\sqrt{2}$+$\sqrt{3}$)C.4+2$\sqrt{6}$D.4(1+$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,圆锥的顶点为P,底面圆心为O,线段AB和线段CD都是底面圆的直径,且直线AB与直线CD的夹角为$\frac{π}{2}$,已知|OA|=1,|PA|=2.
(1)求该圆锥的体积;
(2)求证:直线AC平行于平面PBD,并求直线AC到平面PBD的距离.

查看答案和解析>>

同步练习册答案