数列满足,(),是常数.
(Ⅰ)当时,求及的值;
(Ⅱ)数列是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由.
(Ⅰ)..
(Ⅱ)对任意,数列都不可能是等差数列.
解析试题分析:(Ⅰ)由于,且.
所以当时,得,故.
从而. 6分
(Ⅱ)数列不可能为等差数列,证明如下:
由,得
,,.
若存在,使为等差数列,则,
即,解得.
于是,.
这与为等差数列矛盾.所以,对任意,数列都不可能是等差数列. 12分
考点:本题主要考查数列的递推公式,等差数列的定义,反证法。
点评:中档题,本题综合性较强,特别是(2)探究数列的特征,利用反证法证明数列不可能是等差数列。注意,首先假设某命题不成立(即在原命题的条件下,结论不成立),然后推理出明显矛盾的结果,从而下结论说原假设不成立,原命题得证。一定要用到“反设”,法则表示反证法。
科目:高中数学 来源: 题型:解答题
已知函数f(x)= m·log2x + t的图象经过点A(4,1)、点B(16,3)及点C(Sn,n),其中Sn为数列{an}的前n项和,n∈N*.
(Ⅰ)求Sn和an;
(Ⅱ)设数列{bn}的前n项和为Tn , bn = f(an) – 1, 求不等式Tn£ bn的解集,n∈N*.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设数列满足,其中为实数,且,
(1)求证:时数列是等比数列,并求;
(2)设,求数列的前项和;
(3)设,记,设数列的前项和为,求证:对任意正整数都有.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列满足:(其中常数).
(1)求数列的通项公式;
(2)当时,数列中是否存在不同的三项组成一个等比数列;若存在,求出满足条件的三项,若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
已知数列为公差不为的等差数列,为前项和,和的等差中项为,且.令数列的前项和为.
(Ⅰ)求及;
(Ⅱ)是否存在正整数成等比数列?若存在,求出所有的的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com