精英家教网 > 高中数学 > 题目详情

数列满足),是常数.
(Ⅰ)当时,求的值;
(Ⅱ)数列是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由.

(Ⅰ)
(Ⅱ)对任意,数列都不可能是等差数列.

解析试题分析:(Ⅰ)由于,且
所以当时,得,故
从而.          6分
(Ⅱ)数列不可能为等差数列,证明如下:


若存在,使为等差数列,则
,解得
于是
这与为等差数列矛盾.所以,对任意,数列都不可能是等差数列.       12分
考点:本题主要考查数列的递推公式,等差数列的定义,反证法。
点评:中档题,本题综合性较强,特别是(2)探究数列的特征,利用反证法证明数列不可能是等差数列。注意,首先假设某命题不成立(即在原命题的条件下,结论不成立),然后推理出明显矛盾的结果,从而下结论说原假设不成立,原命题得证。一定要用到“反设”,法则表示反证法。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设各项均为正数的数列的前项和为,满足构成等比数列.
(1) 证明:
(2) 求数列的通项公式;
(3) 证明:对一切正整数,有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)= m·log2x + t的图象经过点A(4,1)、点B(16,3)及点C(Sn,n),其中Sn为数列{an}的前n项和,n∈N*.
(Ⅰ)求Sn和an
(Ⅱ)设数列{bn}的前n项和为Tn , bn = f(an) – 1, 求不等式Tn£ bn的解集,n∈N*.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列满足,其中为实数,且
(1)求证:时数列是等比数列,并求
(2)设,求数列的前项和
(3)设,记,设数列的前项和为,求证:对任意正整数都有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知公差不为零的等差数列的前四项和为10,且成等比数列
(1)求通项公式(2)设,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足:(其中常数).
(1)求数列的通项公式;
(2)当时,数列中是否存在不同的三项组成一个等比数列;若存在,求出满足条件的三项,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前n项和为=1,且
(1)求的值,并求数列的通项公式;
(2)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,,前项的和为,对任意的总成等差数列.
(1)求的值并猜想数列的通项公式
(2)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知数列为公差不为的等差数列,为前项和,的等差中项为,且.令数列的前项和为
(Ⅰ)求
(Ⅱ)是否存在正整数成等比数列?若存在,求出所有的的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案