精英家教网 > 高中数学 > 题目详情

已知函数f(x)= m·log2x + t的图象经过点A(4,1)、点B(16,3)及点C(Sn,n),其中Sn为数列{an}的前n项和,n∈N*.
(Ⅰ)求Sn和an
(Ⅱ)设数列{bn}的前n项和为Tn , bn = f(an) – 1, 求不等式Tn£ bn的解集,n∈N*.

(Ⅰ)(Ⅱ)不等式的解集为{1, 2,3 }

解析试题分析:由 
所以f(x)= log2x  – 1 .由条件得: n = log2Sn  – 1 .
得: ,
,
,
所以 .
(2)    , 不等式成立.
  bn = f(an) – 1= n  – 2 ,

20070129

 
,

解得:
2,3
所求不等式的解集为{1, 2,3 }.
考点:本小题主要考查由数列的前n项和求数列的通项公式,前n项和公式的应用和作差法比较大小的应用.
点评:根据数列的前n项和公式求数列的通项公式时,不要忘记分两种情况进行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设数列的前项和为,对任意满足,且
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列{}的前n项和为
(1)设,证明:数列是等比数列;
(2)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等差数列的公差,等比数列公比为,且
(1)求等比数列的公比的值;
(2)将数列中的公共项按由小到大的顺序排列组成一个新的数列,是否存在正整数(其中)使得都构成等差数列?若存在,求出一组的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是数列的前项和,且对任意,有
的通项公式;
求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等差数列中,.
(1)求数列的通项公式;
(2)若数列满足),则是否存在这样的实数使得为等比数列;
(3)数列满足为数列的前n项和,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列满足,若数列满足:,且当 时,
(I) 求 ;
(II)证明:,(注:).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列满足),是常数.
(Ⅰ)当时,求的值;
(Ⅱ)数列是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列具有性质:①为整数;②对于任意的正整数,当为偶数时,
;当为奇数时,.
(1)若为偶数,且成等差数列,求的值;
(2)设(N),数列的前项和为,求证:
(3)若为正整数,求证:当(N)时,都有.

查看答案和解析>>

同步练习册答案