精英家教网 > 高中数学 > 题目详情
8.在如图所示的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=4,EF=3,AD=AE=BE=2,G是BC的中点.
(1)求证:BD⊥EG;
(2)求二面角G-DE-F的平面角的余弦值.

分析 (1)根据题目条件先证明EB、EA、EF两两相互垂直,然后以E为原点,以EB、EF、EA所在直线分别为x、y、z轴建立空间直角坐标系,运用向量数量积等于0,从而证明BD⊥EG;
(2)在(1)的基础上,求出二面角的两个半平面的法向量,利用法向量求二面角的平面角的余弦值.

解答 解:(1)证∵EF⊥平面ABE,AE?平面AEB,BE?平面AEB,
∴EF⊥AE,EF⊥BE,
又AE⊥EB,
∴FE,BE,AE两两垂直.
以点E为坐标原点,FE,BE,AE分别为X,Y,Z轴
建立如图所示的空间直角坐标系.
由已知得,A(0,0,2),B(2,0,0),
C(2,4,0),F(0,3,0),D(0,2,2),
G(2,2,0).
∴$\overrightarrow{EG}=(2,2,0)$,$\overrightarrow{BD}=(-2,2,2)$,
∴$\overrightarrow{DB}•\overrightarrow{EG}=-2×2+2×2+2×0=0$,
∴BD⊥EG.
(2)由已知得$\overrightarrow{EB}=(2,0,0)$是平面DEF的法向量.
设平面DEG的法向量为$\overrightarrow{n}=(x,y,z)$,
∵$\overrightarrow{ED}=(0,2,2),\overrightarrow{EG}=(2,2,0)$,
∴$\left\{\begin{array}{l}{\overrightarrow{ED}•\overrightarrow{n}=0}\\{\overrightarrow{EG}•\overrightarrow{n}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{y+z=0}\\{x+y=0}\end{array}\right.$,令x=1,得$\overrightarrow{n}=(1,-1,1)$.
设平面DEG与平面DEF所成锐二面角的大小为θ,
则cosθ=$\frac{|\overrightarrow{n}•\overrightarrow{EB}|}{|\overrightarrow{n}|•|\overrightarrow{EB}|}=\frac{\sqrt{3}}{3}$
∴平面EDG与平面DEF所成锐二面角的余弦值为$\frac{\sqrt{3}}{3}$.

点评 本题考查了,直线与平面垂直的性质,考查了运用平面法向量求二面角的三角函数值,解答此题的关键是正确建立空间直角坐标系,是中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知边长为$2\sqrt{3}$的菱形ABCD中,∠BAD=60°,沿对角线BD折成二面角为120°的四面体,则四面体的外接球的表面积为28π.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年安徽六安一中高一上国庆作业二数学试卷(解析版) 题型:选择题

若函数的定义域是,则函数的定义域是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知△ABC的三个顶点的坐标为A(-1,0)、B(4,0)、C(0,c).
(1)若$\overrightarrow{AC}$⊥$\overrightarrow{BC}$,求c的值;
(2)当c满足(1)问题的结论时,求△ABC的重心坐标G(x,y).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知中心在原点,焦点在x轴上的椭圆C的离心率为$\frac{1}{2}$,其一个顶点为抛物线x2=-4$\sqrt{3}$y的焦点.
(1)求椭圆C的标准方程;
(2)若过点P(2,1)的直线l与椭圆C在第一象限相切于点M,求直线l的方程和点M的坐标;
(3)是否存在过点P(2,1)的直线l1与椭圆C相交于不同的两点A,B,且满足$\overrightarrow{PA}$•$\overrightarrow{PB}$=${\overrightarrow{PM}^2}$?若存在,求出直线l1的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{6}}}{3}$,上顶点为(0,1).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过原点O作两条互相垂直的射线,与椭圆C交于A,B两点,求证:点O到直线AB的距离为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知一个椭圆的焦点在x轴上、离心率为$\frac{{\sqrt{3}}}{2}$,右焦点到右准线($x=\frac{a^2}{c}$)的距离为$\frac{{\sqrt{3}}}{3}$.
(1)求椭圆的标准方程;
(2)一条直线经过椭圆的一个焦点且斜率为1,求直线与椭圆的两个交点之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数y=f(x)的定义域为D,值域为A,如果存在函数x=g(t),使得函数y=f[g(t)]的值域仍是A,那么称x=g(t)是函数y=f(x)的一个等值域变换.设f(x)=log2x的定义域为[2,8],已知x=g(t)=$\frac{{m{t^2}-nt+m}}{{{t^2}+1}}({m∈R,n∈{R_+}})$是y=f(x)的一个等值变换,且函数y=f[g(t)]的定义域为R,则m=5,n=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在如图的几何体中,四边形CDEF为正方形,四边形ABCD为等腰梯形,AB∥CD,AB=2BC,∠ABC=60°,AC⊥FB.
(1)求证:AC⊥平面FBC;
(2)求平面CBF与平面ADE所成夹角的正弦值.

查看答案和解析>>

同步练习册答案