【题目】如图,梯形中,,矩形所在的平面与平面垂直,且.
(Ⅰ)求证:平面平面;
(Ⅱ)若为线段上一点,直线与平面所成的角为,求的最大值.
科目:高中数学 来源: 题型:
【题目】在平面真角坐标系xOy中,曲线的参数方程为(t为参数),以原点O为极点,x轴正半轴为极轴,建立根坐标系.曲线的极坐标方程为.
(1)求曲线的普通方程和曲线的直角坐标方程;
(2)若曲线与曲线交于M,N两点,直线OM和ON的斜率分别为和,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某企业的某种产品中抽取件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:
(Ⅰ)求这件产品质量指标值的样本平均数和样本方差(同一组数据用该区间的中点值作代表,记作,);
(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数,近似为样本方差.
(i)若使的产品的质量指标值高于企业制定的合格标准,则合格标准的质量指标值大约为多少?
(ii)若该企业又生产了这种产品件,且每件产品相互独立,则这件产品质量指标值不低于的件数最有可能是多少?
附:参考数据与公式:,;若,则①;②;③.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,点在椭圆上.
(1)求椭圆的方程;
(2)设动直线与椭圆有且仅有一个公共点,判断是否存在以原点为圆心的圆,满足此圆与相交两点,(两点均不在坐标轴上),且使得直线,的斜率之积为定值?若存在,求此圆的方程与定值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)若,且,则的取值范围是______.
(2)若,,且,则的取值范围是______.
(3)已知,且,则的最小值是______.
(4)已知实数,,若,,且,则的最小值______.
(5)已知实数,,若,,则的最小值______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥的底面是正方形,侧棱底面,,是的中点.
(1)证明:平面;
(2)求二面角的余弦值;
(3)若点在线段(不包含端点)上,且直线平面,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数对定义域内的每一个值,在其定义域内都存在唯一的,使成立,则称该函数为“依赖函数”.
(1)判断函数是否为“依赖函数”,并说明理由;
(2)若函数在定义域上为“依赖函数”,求的取值范围;
(3)已知函数在定义域上为“依赖函数”.若存在实数,使得对任意的,不等式都成立,求实数的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com