【题目】若函数对定义域内的每一个值,在其定义域内都存在唯一的,使成立,则称该函数为“依赖函数”.
(1)判断函数是否为“依赖函数”,并说明理由;
(2)若函数在定义域上为“依赖函数”,求的取值范围;
(3)已知函数在定义域上为“依赖函数”.若存在实数,使得对任意的,不等式都成立,求实数的最大值.
【答案】(1)不是“依赖函数”;(2),(3)
【解析】
(1)取特殊值,得到,无解,由此证得不是“依赖函数”.(2)根据的单调性和函数值为正数,得到,化简后求得的关系式,代入并化简,利用二次函数单调性求得的取值范围.(3)对分成,,两种情况,根据“依赖函数”的定义,求得的值.由此化简不等式,利用判别式和对钩函数的性质,求得实数的最大值.
解:(1)对于函数的定义域内存在,则,无解.
故不是“依赖函数”;
(2)因为在递增,故,即,
由,故,得,
从而在上单调递增,故,
(3)①若,故在上最小值为0,此时不存在,舍去;
②若故在上单调递减,
从而,解得(舍)或.
从而,存在,使得对任意的,有不等式都成立,
即恒成立,由,
得,由,可得,
又在单调递减,故当时,,
从而,解得,
综上,故实数的最大值为.
科目:高中数学 来源: 题型:
【题目】“既要金山银山,又要绿水青山”。某风景区在一个直径为米的半圆形花圆中设计一条观光线路。打算在半圆弧上任选一点(与不重合),沿修一条直线段小路,在路的两侧(注意是两侧)种植绿化带;再沿弧修一条弧形小路,在小路的一侧(注意是一侧)种植绿化带,小路与绿化带的宽度忽略不计。
(1)设(弧度),将绿化带的总长度表示为的函数;
(2)求绿化带的总长度的最大值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程是,曲线的参数方程为:(为参数).
(1)求曲线,的直角坐标方程;
(2)设曲线,交于点,,已知点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,曲线,,C与l有且仅有一个公共点.
(Ⅰ)求a;
(Ⅱ)O为极点,A,B为C上的两点,且,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋中装有9只球,其中标有数字1,2,3,4的小球各2个,标数字5的小球有1个.从袋中任取3个小球,每个小球被取出的可能性都相等,用表示取出的3个小球上的最大数字.
(1)求取出的3个小球上的数字互不相同的概率;
(2)求随机变量的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是平行四边形,,侧面底面,,.
(1)求证:平面平面;
(2)过的平面交于点,若平面把四面体分成体积相等的两部分,求二面角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,
(Ⅰ)若在上的最大值为,求实数b的值;
(Ⅱ)若对任意x∈[1,e],都有恒成立,求实数a的取值范围;
(Ⅲ)在(Ⅰ)的条件下,设,对任意给定的正实数a,曲线y=F(x)上是否存在两点P、Q,使得△POQ是以O(O为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在y轴上?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱柱,平面,P是内一点,点E,F在直线上运动,若直线和所成角的最小值与直线和平面所成角的最大值相等,则满足条件的点P的轨迹是( )
A.圆的一部分B.椭圆的一部分C.抛物线的一部分D.双曲线的一部分
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com