精英家教网 > 高中数学 > 题目详情

【题目】若函数对定义域内的每一个值,在其定义域内都存在唯一的,使成立,则称该函数为“依赖函数”.

(1)判断函数是否为“依赖函数”,并说明理由;

(2)若函数在定义域上为“依赖函数”,求的取值范围;

(3)已知函数在定义域上为“依赖函数”.若存在实数,使得对任意的,不等式都成立,求实数的最大值.

【答案】(1)不是“依赖函数”;(2),(3)

【解析】

1)取特殊值,得到,无解,由此证得不是“依赖函数”.(2)根据的单调性和函数值为正数,得到,化简后求得的关系式,代入并化简,利用二次函数单调性求得的取值范围.3)对分成,两种情况,根据“依赖函数”的定义,求得的值.由此化简不等式,利用判别式和对钩函数的性质,求得实数的最大值.

解:(1)对于函数的定义域内存在,则,无解.

不是“依赖函数”;

(2)因为递增,故,即

,故,得

从而上单调递增,故

(3)①若,故上最小值为0,此时不存在,舍去;

②若上单调递减,

从而,解得(舍)或.

从而,存在,使得对任意的,有不等式都成立,

恒成立,由

,由,可得

单调递减,故当时,

从而,解得

综上,故实数的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,梯形中,,矩形所在的平面与平面垂直,且.

(Ⅰ)求证:平面平面

(Ⅱ)若为线段上一点,直线与平面所成的角为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“既要金山银山,又要绿水青山”。某风景区在一个直径米的半圆形花圆中设计一条观光线路。打算在半圆弧上任选一点(与不重合),沿修一条直线段小路,在路的两侧(注意是两侧)种植绿化带;再沿弧修一条弧形小路,在小路的一侧(注意是一侧)种植绿化带,小路与绿化带的宽度忽略不计。

(1)设(弧度),将绿化带的总长度表示为的函数

(2)求绿化带的总长度的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程是,曲线的参数方程为:为参数).

1)求曲线的直角坐标方程;

2)设曲线交于点,已知点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,曲线,C与l有且仅有一个公共点.

(Ⅰ)求a

(Ⅱ)O为极点,A,B为C上的两点,且,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中装有9只球,其中标有数字1,2,3,4的小球各2个,标数字5的小球有1个.从袋中任取3个小球,每个小球被取出的可能性都相等,用表示取出的3个小球上的最大数字.

(1)求取出的3个小球上的数字互不相同的概率;

(2)求随机变量的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形,,侧面底面.

(1)求证:平面平面

(2)过的平面交于点,若平面把四面体分成体积相等的两部分,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,

)若上的最大值为,求实数b的值;

)若对任意x∈[1e],都有恒成立,求实数a的取值范围;

)在()的条件下,设,对任意给定的正实数a,曲线y=Fx)上是否存在两点PQ,使得△POQ是以OO为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在y轴上?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱平面P内一点,点EF在直线上运动,若直线所成角的最小值与直线和平面所成角的最大值相等,则满足条件的点P的轨迹是(

A.圆的一部分B.椭圆的一部分C.抛物线的一部分D.双曲线的一部分

查看答案和解析>>

同步练习册答案