【题目】若函数
对定义域内的每一个值
,在其定义域内都存在唯一的
,使
成立,则称该函数为“依赖函数”.
(1)判断函数
是否为“依赖函数”,并说明理由;
(2)若函数
在定义域
上为“依赖函数”,求
的取值范围;
(3)已知函数
在定义域
上为“依赖函数”.若存在实数
,使得对任意的
,不等式
都成立,求实数
的最大值.
【答案】(1)
不是“依赖函数”;(2)
,(3)![]()
【解析】
(1)取特殊值
,得到
,无解,由此证得
不是“依赖函数”.(2)根据
的单调性和函数值为正数,得到
,化简后求得
的关系式,代入
并化简,利用二次函数单调性求得
的取值范围.(3)对
分成
,
,两种情况,根据“依赖函数”的定义,求得
的值.由此化简不等式
,利用判别式和对钩函数的性质,求得实数
的最大值.
解:(1)对于函数
的定义域
内存在
,则
,无解.
故
不是“依赖函数”;
(2)因为
在
递增,故
,即
,![]()
由
,故
,得
,
从而
在
上单调递增,故
,
(3)①若
,故
在
上最小值为0,此时不存在
,舍去;
②若
故
在
上单调递减,
从而
,解得
(舍)或
.
从而,存在
,使得对任意的
,有不等式
都成立,
即
恒成立,由
,
得
,由
,可得
,
又
在
单调递减,故当
时,
,
从而
,解得
,
综上,故实数
的最大值为
.
科目:高中数学 来源: 题型:
【题目】“既要金山银山,又要绿水青山”。某风景区在一个直径
为
米的半圆形花圆中设计一条观光线路。打算在半圆弧上任选一点
(与
不重合),沿
修一条直线段小路,在路的两侧(注意是两侧)种植绿化带;再沿弧
修一条弧形小路,在小路的一侧(注意是一侧)种植绿化带,小路与绿化带的宽度忽略不计。
![]()
(1)设
(弧度),将绿化带的总长度表示为
的函数
;
(2)求绿化带的总长度
的最大值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程是
,曲线
的参数方程为:
(
为参数).
(1)求曲线
,
的直角坐标方程;
(2)设曲线
,
交于点
,
,已知点
,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,曲线
,
,C与l有且仅有一个公共点.
(Ⅰ)求a;
(Ⅱ)O为极点,A,B为C上的两点,且
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋中装有9只球,其中标有数字1,2,3,4的小球各2个,标数字5的小球有1个.从袋中任取3个小球,每个小球被取出的可能性都相等,用
表示取出的3个小球上的最大数字.
(1)求取出的3个小球上的数字互不相同的概率;
(2)求随机变量
的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是平行四边形,
,侧面
底面
,
,
.
![]()
(1)求证:平面
平面
;
(2)过
的平面交
于点
,若平面
把四面体
分成体积相等的两部分,求二面角
的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,![]()
(Ⅰ)若
在
上的最大值为
,求实数b的值;
(Ⅱ)若对任意x∈[1,e],都有
恒成立,求实数a的取值范围;
(Ⅲ)在(Ⅰ)的条件下,设
,对任意给定的正实数a,曲线y=F(x)上是否存在两点P、Q,使得△POQ是以O(O为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在y轴上?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱柱
,
平面
,P是
内一点,点E,F在直线
上运动,若直线
和
所成角的最小值与直线
和平面
所成角的最大值相等,则满足条件的点P的轨迹是( )
A.圆的一部分B.椭圆的一部分C.抛物线的一部分D.双曲线的一部分
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com