精英家教网 > 高中数学 > 题目详情
若函数y=f(x) (x∈R)满足:f(x+2)=f(x),且x∈[–1, 1]时,f(x) =" |" x |,函数y=g(x)是定义在R上的奇函数,且x∈(0, +∞)时,g(x) =" log" 3 x,则函数y=f(x)的图像与函数y=g(x)的图像的交点个数为_______.
4    

试题分析:因为f(x+2)=f(x),所以f(x)的周期T=2,又x∈[–1, 1]时,f(x) =" |" x |,画出f(x)的简图如下,因为函数y=g(x)是定义在R上的奇函数,且x∈(0, +∞)时,g(x) =" log" 3 x,所以,在同一坐标内 画出g(x)的图像。由图象可知交点的个数为4个。
点评:本题主要考查函数性质的综合应用及数形结合的数学思想。做此题的关键是熟练画出函数的图像。在求g(x的解析式时一定要求完整,别忘记x=0的情况。属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
若函数对任意的实数,均有,则称函数是区间上的“平缓函数”.  
(1) 判断是不是实数集R上的“平缓函数”,并说明理由;
(2) 若数列对所有的正整数都有 ,设,
求证: .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(1)若不等式的解集为,求实数的值;
(2)在(1)的条件下,若存在实数使成立,求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)如果函数的单调减区间为,求函数的解析式;
(2)在(1)的条件下,求函数的图像过点的切线方程;
(3)证明:对任意的,不等式恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的图像与轴有两个交点
(1)设两个交点的横坐标分别为试判断函数有没有最大值或最小值,并说明理由.
(2)若在区间上都是减函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图给出了函数,的图象,则与函数,依次对应的图象是(    )
A.①②③④B.①③②④
C.②③①④D.①④③②

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(11分)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为组成数对(,并构成函数
(Ⅰ)写出所有可能的数对(,并计算,且的概率;
(Ⅱ)求函数在区间[上是增函数的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数在区间的导函数为在区间的导函数为若在区间恒成立,则称函数在区间上为“凸函数”,已知,若对任意的实数m满足时,函数在区间上为“凸函数”,则的最大值为(   )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义新运算“&”与“”:,则函数 
是(  )
A.奇函数B.偶函数
C.非奇非偶函数D.既是奇函数又是偶函数

查看答案和解析>>

同步练习册答案