精英家教网 > 高中数学 > 题目详情
17.在等腰△ABC中,AB=AC,AC边上的中线BD长为6,则当△ABC的面积取得最大值时,AB的长为4$\sqrt{5}$.

分析 设AB=AC=2x,三角形的顶角θ,则由余弦定理求得cosθ的表达式,进而根据同角三角函数基本关系求得sinθ,最后根据三角形面积公式表示出三角形面积的表达式,根据一元二次函数的性质求得面积的最大值.

解答 解:在等腰△ABC中,设AB=AC=2x,AD=x.
设三角形的顶角为θ,则由余弦定理得cosθ=$\frac{5{x}^{2}-36}{4{x}^{2}}$,∴sinθ=$\frac{\sqrt{-9({x}^{2}-20)^{2}+6{0}^{2}-3{6}^{2}}}{4{x}^{2}}$,
 由公式三角形:
S=$\frac{1}{2}$absinθ=$\frac{1}{2}•2x•2x•$$\frac{\sqrt{-9({x}^{2}-20)^{2}+6{0}^{2}-3{6}^{2}}}{4{x}^{2}}$=$\frac{1}{2}\sqrt{-9({x}^{2}-20)^{2}+6{0}^{2}-3{6}^{2}}$得:
当 x2=20时,三角形面积有最大值,即AB=2x=4$\sqrt{5}$时三角形面积有最大值.
所以答案为:4$\sqrt{5}$.

点评 本题考查了三角形的面积最值问题,设变量,用变量表达面积是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.关于x的方程($\frac{1}{π}$)x=$\frac{1+a}{1-a}$有负实数根,则a的取值范围是(  )
A.(-1,1)B.(0,1)C.(-1,0)D.(-$\frac{2}{3}$,$\frac{2}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,正方体ABCD-A1B1C1D1的棱长为1,E,F是线段B1D上的两个动点,且EF=$\frac{\sqrt{2}}{2}$,则下列结论错误的是(  )
A.AC⊥BFB.直线AE、BF所成的角为定值
C.EF∥平面ABCD.三棱锥A-BEF的体积为定值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则p=2,准线方程为x=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,“sinB=1”是“△ABC为直角三角形”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{3}+{x}^{2}+bx+c,x<1}\\{alnx,x≥1}\end{array}\right.$图象过点(-1,2),且在该点处的切线与直线x-5y+1=0垂直.
(1)求实数b,c的值;
(2)对任意给定的正实数a,曲线y=f(x)上是否存在两点P,Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.过点(1,3)且渐近线为y=±$\frac{1}{2}$x的双曲线方程是$\frac{4{y}^{2}}{35}$-$\frac{{x}^{2}}{35}$=1,其实轴长是$\sqrt{35}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知某企业1月份到6月份的利润X(单位:万元)受到市场的影响,是一个随机变量,每个月的利润互不影响,且X的分布列如表所示:
X691218
Pa$\frac{1}{3}$$\frac{1}{10}$$\frac{1}{15}$
(1)求第1个月和第2个月的利润不都高于9万元的概率;
(2)求每个月的平均利润;
(3)求证:4,5,6月份的总利润是1,2,3月份的总利润的3倍的概率为$\frac{1}{27000}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆的两个焦点F1、F2都在y轴上,且a=5,c=3.
(1)求椭圆的标准方程;
(2)如图,过椭圆的焦点F1的直线与椭圆交于A、B两点,求△ABF2的周长.

查看答案和解析>>

同步练习册答案