精英家教网 > 高中数学 > 题目详情
判断函数f(x)=在区间(1,+∞)上的单调性,并用单调性定义证明.
f(x)在区间(1,+∞)上是减函数.利用定义证明

试题分析:f(x)在区间(1,+∞)上是减函数.证明如下: 2分
取任意的x1,x2∈(1,+∞),且x1<x2,则 3分
f(x1)-f(x2)=.    5分
∵x1<x2,∴x2-x1>0.   6分
又∵x1,x2∈(1,+∞),∴x2+x1>0,-1>0,-1>0,  8分
∴(-1)(-1)>0.(x2+x1)(x2-x1)>0  10分
∴f(x1)-f(x2)>0.  11分
根据定义知:f(x)在区间(1,+∞)上是减函数. 12分
点评:熟练掌握定义法证明函数的单调性的步骤是解决此类问题的关键,属基础题
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)试问该函数能否在处取到极值?若有可能,求实数的值;否则说明理由;
(2)若该函数在区间上为增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(I)求函数的单调区间;
(II)若函数上是减函数,求实数的最小值;
(III)若,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

判断下列函数的奇偶性
(1)                  (2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,矩形纸板ABCD的顶点AB分别在正方形边框EOFG的边OEOF上,当点BOF边上进行左右运动时,点A随之在OE上进行上下运动.若AB=8,BC=3,运动过程中,则点D到点O距离的最大值为
A.B.9C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数的定义域为,若存在常数,使对一切实数均成立
,则称为“好运”函数.给出下列函数:
;②;③;④.
其中是“好运”函数的序号为         .
A.① ②B.① ③C.③D.②④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若,求证:
(2)若实数满足.试求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的单调增区间与值域相同,则实数的取
值为(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
①当时,求曲线在点处的切线方程。
②求的单调区间

查看答案和解析>>

同步练习册答案