精英家教网 > 高中数学 > 题目详情
12.设变量x,y满足约束条件 $\left\{\begin{array}{l}{x-y≤0}\\{x+y≥0}\\{x+2y≥0}\end{array}\right.$,则z=x-2y的最大值为0.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.

解答 解:由约束条件 $\left\{\begin{array}{l}{x-y≤0}\\{x+y≥0}\\{x+2y≥0}\end{array}\right.$作出可行域如图,

化目标函数z=x-2y为y=$\frac{x}{2}-\frac{z}{2}$.
由图可知,当直线y=$\frac{x}{2}-\frac{z}{2}$过O时,直线在y轴上的截距最小,z有最大值为0.
故答案为:0.

点评 本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知$f(x)=\frac{1}{2}sin(2x+\frac{π}{6})$
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的最大值,并写出取最大值时自变量x的集合;
(3)求函数f(x)在$x∈[{0,\frac{π}{2}}]$上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知复数z=$\frac{1+{i}^{2017}}{1+i}$在复平面上所对应的点为P,则点P的坐标是(  )
A.(1,0)B.(-1,0)C.(0,0)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知二次函数f(x)=x2+2ax+2b有两个零点x1,x2,且-1<x1<1<x2<2,则直线bx-(a-1)y+3=0的斜率的取值范围是(  )
A.$(-\frac{2}{5},\frac{2}{3})$B.$(-\frac{2}{5},\frac{3}{2})$C.$(-\frac{2}{5},\frac{1}{2})$D.$(-∞,-\frac{2}{5})∪(\frac{2}{3},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知非零向量$\overrightarrow a,\vec b$满足$|\overrightarrow a|=2|\vec b|$且$(\overrightarrow a+\vec b)⊥\vec b$,则向量$\overrightarrow a,\vec b$的夹角为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若实数x,y满足条件$\left\{\begin{array}{l}{2x-y+1≥0}\\{2x+y-5≥0}\\{x-2≤0}\end{array}\right.$,则$\frac{1}{z}$=$\frac{3x+2y}{4x}$,则z的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}x=2cosφ\\ y=2+2sinφ\end{array}\right.$(φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求圆C的普通方程;
(Ⅱ)直线l的极坐标方程是$2ρsin({θ+\frac{π}{6}})=5\sqrt{3}$,射线$OM:θ=\frac{π}{6}$与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图所示,在南海上有两座灯塔A,B,这两座灯座之间的距离为60千米,有个货船从岛P处出发前往距离120千米岛Q处,行驶至一半路程时刚好到达M处,恰好M处在灯塔A的正南方,也正好在灯塔B的正西方,向量$\overrightarrow{PQ}⊥\overrightarrow{BA}$,则$\overrightarrow{AQ}•\overrightarrow{BP}$=-3600.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥E-ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.
(1)求B到平面CDE的距离
(2)在线段DE上是否存在一点F,使AF∥平面BCE?若存在,求出$\frac{EF}{ED}$的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案