精英家教网 > 高中数学 > 题目详情
17.若实数x,y满足条件$\left\{\begin{array}{l}{2x-y+1≥0}\\{2x+y-5≥0}\\{x-2≤0}\end{array}\right.$,则$\frac{1}{z}$=$\frac{3x+2y}{4x}$,则z的最大值为1.

分析 由约束条件作出可行域,由$\frac{1}{z}$=$\frac{3x+2y}{4x}$=$\frac{1}{4}(3+2•\frac{y}{x})$,结合$\frac{y}{x}$的几何意义求解.

解答 解:由约束条件$\left\{\begin{array}{l}{2x-y+1≥0}\\{2x+y-5≥0}\\{x-2≤0}\end{array}\right.$作出可行域如图,

$\frac{1}{z}$=$\frac{3x+2y}{4x}$=$\frac{1}{4}(3+2•\frac{y}{x})$,
故当$\frac{y}{x}$取得最小值时,z=$\frac{4x}{3x+2y}$取得最大值,而$(\frac{y}{x})_{min}={k}_{OA}=\frac{1}{2}$.
∴z的最大值为1.
故答案为:1.

点评 本题考查简单的线性规划,考查数学转化思想方法和数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.平面直角坐标系xOy中,曲线C1的方程是$\frac{x^2}{4}+\frac{y^2}{12}=1$,以O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2cosθ-4sinθ.
(Ⅰ)写出C1的参数方程和C2的直角坐标方程;
(Ⅱ)设C2与x轴的一个交点是P(m,0)(m>0),经过P斜率为1的直线l交C1于A,B两点,根据(Ⅰ)中你得到的参数方程,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知i是虚数单位,且m(1+i)=7+ni(m,n∈R),则$\frac{m+ni}{2m-ni}$的虚部等于(  )
A.$\frac{1}{7}$B.$\frac{3}{14}$C.$\frac{1}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数$f(x)=mlnx+\frac{n}{x}$,曲线y=f(x)在点(1,f(1))处的切线方程为y=x-1.
(1)求实数m,n的值;
(2)若b>a>1,$A=f(\frac{a+b}{2})$,$B=\frac{bf(b)-af(a)}{b-a}-1$,试判断A,B两者是否有确定的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设变量x,y满足约束条件 $\left\{\begin{array}{l}{x-y≤0}\\{x+y≥0}\\{x+2y≥0}\end{array}\right.$,则z=x-2y的最大值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在四棱锥P-ABCD中,底面ABCD为平行四边形,AB=3,$AD=2\sqrt{2}$,∠ABC=45°,P点在底面ABCD内的射影E在线段AB上,且PE=2,BE=2EA,M在线段CD上,且$CM=\frac{2}{3}CD$. 
(Ⅰ)证明:CE⊥平面PAB;
(Ⅱ)在线段AD上确定一点F,使得平面PMF⊥平面PAB,并求三棱锥P-AFM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若直线y=k(x+2)上存在点(x,y)满足$\left\{\begin{array}{l}x-y≥0\\ x+y≤1\\ y≥-1\end{array}\right.$,则实数k的取值范围是(  )
A.$[{-1,-\frac{1}{4}}]$B.$[{-1,\frac{1}{5}}]$C.$({-∞,-1}]∪[{\frac{1}{5},+∞})$D.$[{-\frac{1}{4},\frac{1}{5}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.sin2040°=(  )
A.$-\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知tanθ=2.
(1)求1+sinθcosθ-cos2θ的值;
(2)若sin(α+θ)=$\frac{2}{3}$,sin(α-θ)=-$\frac{1}{5}$,求tanα.

查看答案和解析>>

同步练习册答案