精英家教网 > 高中数学 > 题目详情
2.在四棱锥P-ABCD中,底面ABCD为平行四边形,AB=3,$AD=2\sqrt{2}$,∠ABC=45°,P点在底面ABCD内的射影E在线段AB上,且PE=2,BE=2EA,M在线段CD上,且$CM=\frac{2}{3}CD$. 
(Ⅰ)证明:CE⊥平面PAB;
(Ⅱ)在线段AD上确定一点F,使得平面PMF⊥平面PAB,并求三棱锥P-AFM的体积.

分析 (Ⅰ)由余弦定理得EC=2,从而BE⊥EC,由PE⊥平面ABCD,得PE⊥EC,由此能证明CE⊥平面PAB.
(Ⅱ)取F是AD的中点,作AN∥EC交CD于点N,则AN∥EC.推导出FM∥EC,从而平面PFM⊥平面PAB,由此能求出三棱锥P-AFM的体积.

解答 证明:(Ⅰ)在△BCE中,BE=2,$BC=2\sqrt{2}$,∠ABC=45°,由余弦定理得EC=2.
所以BE2+EC2=BC2,从而有BE⊥EC.…(2分)
由PE⊥平面ABCD,得PE⊥EC.…(4分)
所以CE⊥平面PAB.…(5分)
解:(Ⅱ)取F是AD的中点,作AN∥EC交CD于点N,
则四边形AECN为平行四边形,CN=AE=1,则AN∥EC.
在△AND中,F,M分别是AD,DN的中点,则FM∥AN,所以FM∥EC.
因为CE⊥平面PAB,所以FM⊥平面PAB.
又FM?平面PFM,所以平面PFM⊥平面PAB.…(9分)
${S_{△AFM}}=\frac{1}{2}•\sqrt{2}•\frac{1}{3}•3•sin{45°}=\frac{1}{2}$.…(10分)
V=$\frac{1}{3}{S_{△AFM}}•PE=\frac{1}{3}$.…(12分)

点评 本题考查线面垂直的证明,考查几何体的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知曲线C在平面直角坐标系xOy下的参数方程为$\left\{\begin{array}{l}x=1+\sqrt{3}cosθ\\ y=\sqrt{3}sinθ\end{array}\right.$(θ为参数),以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系.
(1)求曲线C的普通方程及极坐标方程;
(2)直线l的极坐标方程是$ρcos(θ-\frac{π}{6})=3\sqrt{3}$,射线OT:$θ=\frac{π}{3}(ρ>0)$与曲线C交于点A与直线l交于点B,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数f(x)=x2(x-4)2-a|x-2|+2a有四个零点,则实数a的取值范围是(-8,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.正方体ABCD-A1B1C1D1的棱长为6,点O在BC上,且BO=OC,过点O的直线l与直线AA1,C1D1分别交于M,N两点,则MN与面ADD1A1所成角的正弦值为(  )
A.$\frac{2}{3}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若实数x,y满足条件$\left\{\begin{array}{l}{2x-y+1≥0}\\{2x+y-5≥0}\\{x-2≤0}\end{array}\right.$,则$\frac{1}{z}$=$\frac{3x+2y}{4x}$,则z的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列四个结论中错误的个数是(  )
①若a=30.4,b=log0.40.5,c=log30.4,则a>b>c
②“命题p和命题q都是假命题”是“命题p∧q是假命题”的充分不必要条件
③若平面α内存在一条直线a垂直于平面β内无数条直线,则平面α与平面β垂直
④已知数据x1,x2,…,xn的方差为3,若数据ax1+1,ax2+1,…axn+1,(a>0,a∈R)的方差为12,则a的值为2.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在△ABC中,M是边BC的中点,cos∠BAM=$\frac{{5\sqrt{7}}}{14}$,tan∠AMC=-$\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求角B的大小;
(Ⅱ)若角∠BAC=$\frac{π}{6}$,BC边上的中线AM的长为$\sqrt{21}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知一条抛物线的焦点是直线l:y=-x-t(t>0)与x轴的交点,若抛物线与直线l交两点A,B,且$|{AB}|=2\sqrt{6}$,则t=$\frac{{\sqrt{6}}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和为Sn,且对一切正整数n都有Sn=n2+$\frac{1}{2}$an
(1)求数列{an}的通项公式;
(2)是否存在实数a,使不等式(1-$\frac{1}{{a}_{1}}$)(1-$\frac{1}{{a}_{2}}$)…(1-$\frac{1}{{a}_{n}}$)<$\frac{2{a}^{2}-3}{2a\sqrt{2n+1}}$对一切正整数n都成立?若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案