精英家教网 > 高中数学 > 题目详情
10.正方体ABCD-A1B1C1D1的棱长为6,点O在BC上,且BO=OC,过点O的直线l与直线AA1,C1D1分别交于M,N两点,则MN与面ADD1A1所成角的正弦值为(  )
A.$\frac{2}{3}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{3}$

分析 设MD1交AD于E,根据C1D1∥平面ABCD可得C1D1∥OE,从而E为AD的中点,故可计算出MD1和ND1,从而可求出sin∠NMD1

解答 解:∵C1D1⊥平面ADD1A1
∴∠NMD1是MN与面ADD1A1所成角,
设MD1与AD交点为E,连结OE,
∵C1D1∥平面ABCD,C1D1?平面MND1,平面MND1∩平面ABCD=DE,
∴C1D1∥OE,
∵O是BC的中点,∴E是AD的中点,
∴E是MD1的中点,MD1=2ED1=6$\sqrt{5}$,
∴ND1=2OE=12,∴MN=$\sqrt{1{2}^{2}+(6\sqrt{5})^{2}}$=18,
∴sin∠NMD1=$\frac{N{D}_{1}}{MN}$=$\frac{2}{3}$.
故选A.

点评 本题考查了线面平行的性质,线面角的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知直线l1:3x+4y-3=0,直线l2:6x+8y-1=0(b∈R)平行,则它们之间的距离为(  )
A.2B.$\frac{1}{5}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=sinxcos({x+\frac{π}{6}})$.
(I)求函数f(x)的单调增区间;
(Ⅱ)△ABC的内角A,B,C所对的边分别是a,b,c,若f(C)=$\frac{1}{4}$,a=2,且△ABC的面积为$\sqrt{3}$,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设$\overrightarrow a,\overrightarrow b$都是非零向量,下列四个条件,使$\frac{\overrightarrow a}{|\overrightarrow a|}=\frac{\overrightarrow b}{|\overrightarrow b|}$成立的充要条件是(  )
A.$\overrightarrow a=\overrightarrow b$B.$\overrightarrow a=2\overrightarrow b$C.$\overrightarrow a∥\overrightarrow b$且$|\overrightarrow a|=|\overrightarrow b|$D.$\overrightarrow a∥\overrightarrow b$且方向相同

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数$f(x)=mlnx+\frac{n}{x}$,曲线y=f(x)在点(1,f(1))处的切线方程为y=x-1.
(1)求实数m,n的值;
(2)若b>a>1,$A=f(\frac{a+b}{2})$,$B=\frac{bf(b)-af(a)}{b-a}-1$,试判断A,B两者是否有确定的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在△ABC中,∠B=$\frac{π}{3}$,D为边BC上的点,E为AD上的点,且AE=8,AC=4$\sqrt{10}$,∠CED=$\frac{π}{4}$.
(1)求CE的长
(2)若CD=5,求cos∠DAB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在四棱锥P-ABCD中,底面ABCD为平行四边形,AB=3,$AD=2\sqrt{2}$,∠ABC=45°,P点在底面ABCD内的射影E在线段AB上,且PE=2,BE=2EA,M在线段CD上,且$CM=\frac{2}{3}CD$. 
(Ⅰ)证明:CE⊥平面PAB;
(Ⅱ)在线段AD上确定一点F,使得平面PMF⊥平面PAB,并求三棱锥P-AFM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={(x,y)|y=x+1,0≤x≤1},集合B={(x,y)|y=2x,0≤x≤10},则集合A∩B=(  )
A.{1,2}B.{x|0≤x≤1}C.{(1,2)}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某几何体的三视图如图所示,设正方形的边长为a,则该三棱锥的表面积为(  )
A.a2B.$\sqrt{3}{a^2}$C.$\frac{{\sqrt{3}}}{6}{a^2}$D.$2\sqrt{3}{a^2}$

查看答案和解析>>

同步练习册答案