精英家教网 > 高中数学 > 题目详情
5.设函数$f(x)=mlnx+\frac{n}{x}$,曲线y=f(x)在点(1,f(1))处的切线方程为y=x-1.
(1)求实数m,n的值;
(2)若b>a>1,$A=f(\frac{a+b}{2})$,$B=\frac{bf(b)-af(a)}{b-a}-1$,试判断A,B两者是否有确定的大小关系,并说明理由.

分析 (1)求出导函数,根据导函数的意义和切线方程的概念求出参数m,n的值即可;
(2)利用作差的方法:A,B关系易判断;构造函数,通过导函数判断函数的单调性,进而得出结论.

解答 解:(1)f′(x)=$\frac{m}{x}$-$\frac{n}{{x}^{2}}$,
由于 $\left\{\begin{array}{l}{f(1)=n=0}\\{f′(1)=m-n=1}\end{array}\right.$,
所以m=1,n=0.
(2)判断A>B.
∵$A-B=ln\frac{a+b}{2}-$$({\frac{bf(b)-af(a)}{b-a}-1})$=$\frac{1}{b-a}[{({b-a})ln\frac{a+b}{2}-blnb+alna+b-a}]$
设函数$g(x)=({x-a})ln\frac{x+a}{2}-xlnx+alna+x-a$,x∈(0,+∞)
则$g'(x)=ln\frac{x+a}{2x}+\frac{x-a}{x+a}$,$g''(x)=\frac{{a({x-a})}}{{x{{({x+a})}^2}}}$,
当x>a时,$g''(x)=\frac{{a({x-a})}}{{x{{({x+a})}^2}}}>0,所以g'(x)在({a,+∞})单调递增$.
又g'(x)>g'(a)=0,因此g(x)在(a,+∞)单调递增
又b>a,所以g(b)>g(a)=0,即A-B>0,故A>B.

点评 本题主要考查了函数的构造和利用导函数判断函数的单调性,难点是对题意的转化和函数的构造.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知数列{an} 的前n项和Sn满足Sn=2an-1(n∈N*).
(Ⅰ)求数列{an} 的通项公式;
(Ⅱ)若数列{bn-an} 是首项为3,公差为3的等差数列,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,在三棱锥A-BCD中,AB⊥平面BCD,∠ACB=45°,∠ADB=30°,∠BCD=120°,CD=40,则AB=(  )
A.10B.20C.30D.40

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数f(x)=x2(x-4)2-a|x-2|+2a有四个零点,则实数a的取值范围是(-8,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知二次函数f(x)=x2+2ax+2b有两个零点x1,x2,且-1<x1<1<x2<2,则直线bx-(a-1)y+3=0的斜率的取值范围是(  )
A.$(-\frac{2}{5},\frac{2}{3})$B.$(-\frac{2}{5},\frac{3}{2})$C.$(-\frac{2}{5},\frac{1}{2})$D.$(-∞,-\frac{2}{5})∪(\frac{2}{3},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.正方体ABCD-A1B1C1D1的棱长为6,点O在BC上,且BO=OC,过点O的直线l与直线AA1,C1D1分别交于M,N两点,则MN与面ADD1A1所成角的正弦值为(  )
A.$\frac{2}{3}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若实数x,y满足条件$\left\{\begin{array}{l}{2x-y+1≥0}\\{2x+y-5≥0}\\{x-2≤0}\end{array}\right.$,则$\frac{1}{z}$=$\frac{3x+2y}{4x}$,则z的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在△ABC中,M是边BC的中点,cos∠BAM=$\frac{{5\sqrt{7}}}{14}$,tan∠AMC=-$\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求角B的大小;
(Ⅱ)若角∠BAC=$\frac{π}{6}$,BC边上的中线AM的长为$\sqrt{21}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.任取a∈(-5,5),则函数f(x)=log(a-1)[(a2-5a)x]在(-∞,0)上单调递减的概率为(  )
A.$\frac{4}{5}$B.$\frac{2}{5}$C.$\frac{1}{5}$D.$\frac{3}{10}$

查看答案和解析>>

同步练习册答案