精英家教网 > 高中数学 > 题目详情
15.任取a∈(-5,5),则函数f(x)=log(a-1)[(a2-5a)x]在(-∞,0)上单调递减的概率为(  )
A.$\frac{4}{5}$B.$\frac{2}{5}$C.$\frac{1}{5}$D.$\frac{3}{10}$

分析 函数f(x)=log(a-1)[(a2-5a)x]在(-∞,0)上单调递减,则$\left\{\begin{array}{l}{{a}^{2}-5a<0}\\{a-1>1}\end{array}\right.$,解得2<a<5,利用几何概型的概率计算公式即可求解

解答 解:函数f(x)=log(a-1)[(a2-5a)x]在(-∞,0)上单调递减,则$\left\{\begin{array}{l}{{a}^{2}-5a<0}\\{a-1>1}\end{array}\right.$,解得2<a<5
∴任取a∈(-5,5),则函数f(x)=log(a-1)[(a2-5a)x]在(-∞,0)上单调递减的概率为P=$\frac{5-2}{5+5}=\frac{3}{10}$.
故选:D.

点评 本题考查了几何概型的概率计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设函数$f(x)=mlnx+\frac{n}{x}$,曲线y=f(x)在点(1,f(1))处的切线方程为y=x-1.
(1)求实数m,n的值;
(2)若b>a>1,$A=f(\frac{a+b}{2})$,$B=\frac{bf(b)-af(a)}{b-a}-1$,试判断A,B两者是否有确定的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.sin2040°=(  )
A.$-\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若f(x)=$\sqrt{k{x}^{2}-6kx+k+8}$的定义域是R,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的长轴长为2$\sqrt{2}$,P为椭圆C上异于顶点的一个动点,O为坐标原点,A2为椭圆C的右顶点,点M为线段PA2的中点,且直线PA2与直线OM的斜率之积为-$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)过椭圆C的左焦点F1且不与坐标轴垂直的直线l交椭圆C于两点A,B,线段AB的垂直平分线与x轴交于点N,N点的横坐标的取值范围是$({-\frac{1}{4},0})$,求线段AB的长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某几何体的三视图如图所示,设正方形的边长为a,则该三棱锥的表面积为(  )
A.a2B.$\sqrt{3}{a^2}$C.$\frac{{\sqrt{3}}}{6}{a^2}$D.$2\sqrt{3}{a^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知tanθ=2.
(1)求1+sinθcosθ-cos2θ的值;
(2)若sin(α+θ)=$\frac{2}{3}$,sin(α-θ)=-$\frac{1}{5}$,求tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.对于数据3,3,2,3,6,3,10,3,6,3,2.
①这组数据的众数是3;
②这组数据的众数与中位数的数值不相等;
③这组数据的中位数与平均数的数值相等;
④这组数据的平均数与众数的值相等.
其中正确的结论的个数(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.${∫}_{-1}^{1}$(x2+x+$\sqrt{4-{x}^{2}}$)dx=$\frac{2}{3}$+$\frac{2π}{3}$+$\sqrt{3}$.

查看答案和解析>>

同步练习册答案