精英家教网 > 高中数学 > 题目详情
7.已知tanθ=2.
(1)求1+sinθcosθ-cos2θ的值;
(2)若sin(α+θ)=$\frac{2}{3}$,sin(α-θ)=-$\frac{1}{5}$,求tanα.

分析 (1)利用弦化切的思想即可求解;
(2)利用和与差公式打开,两式相除,弦化切的思想即可求解.

解答 解:∵tanθ=2.
(1)则1+sinθcosθ-cos2θ=$\frac{si{n}^{2}θ+co{s}^{2}θ+sinθcosθ-cos^{2}θ}{si{n}^{2}θ+co{s}^{2}θ}$=$\frac{ta{n}^{2}θ+tanθ}{ta{n}^{2}θ+1}$=$\frac{6}{5}$.
(2)由sin(α+θ)=sinαcosθ+cosαsinθ=$\frac{2}{3}$…①,
sin(α-θ)=sinαcosθ-cosαsinθ=-$\frac{1}{5}$…②,
由①÷②,可得:$\frac{sinαcosθ+cosαsinθ}{sinαcosθ-cosαsinθ}=\frac{tanα+tanθ}{tanα-tanθ}$=$-\frac{10}{3}$.
即$\frac{tanα+2}{tanα-2}$=-$\frac{10}{3}$,
∴tanα=$\frac{14}{13}$.

点评 本题主要考察了同角三角函数关系式和和与差公式,弦化切的思想的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若实数x,y满足条件$\left\{\begin{array}{l}{2x-y+1≥0}\\{2x+y-5≥0}\\{x-2≤0}\end{array}\right.$,则$\frac{1}{z}$=$\frac{3x+2y}{4x}$,则z的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,在四棱锥P-ABCD中,底面是边长为1的正方形,侧棱PD=1,PA=PC=$\sqrt{2}$.
(1)求证:PD⊥平面ABCD;
(2)求证:平面PAC⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.任取a∈(-5,5),则函数f(x)=log(a-1)[(a2-5a)x]在(-∞,0)上单调递减的概率为(  )
A.$\frac{4}{5}$B.$\frac{2}{5}$C.$\frac{1}{5}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥E-ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.
(1)求B到平面CDE的距离
(2)在线段DE上是否存在一点F,使AF∥平面BCE?若存在,求出$\frac{EF}{ED}$的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和为Sn,且对一切正整数n都有Sn=n2+$\frac{1}{2}$an
(1)求数列{an}的通项公式;
(2)是否存在实数a,使不等式(1-$\frac{1}{{a}_{1}}$)(1-$\frac{1}{{a}_{2}}$)…(1-$\frac{1}{{a}_{n}}$)<$\frac{2{a}^{2}-3}{2a\sqrt{2n+1}}$对一切正整数n都成立?若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知复数z满足z+(1+2i)=5-i,则z=4-3i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中,是偶函数且最小正周期为π的函数是(  )
A.y=sin2x+cos2xB.y=sinx+cosxC.$y=cos(2x+\frac{π}{2})$D.$y=sin(2x+\frac{π}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设点M,N的坐标分别为(-2,0),(2,0),直线MP,NP相交于点P,且它们的斜率之积是-$\frac{1}{4}$.
(Ⅰ)求点P的轨迹C的方程;
(Ⅱ)设过定点E(0,2)的直线l与曲线C交于不同的两点A、B,且∠AOB为钝角(其中O为坐标原点),求直线l的斜率k的取值范围.

查看答案和解析>>

同步练习册答案