精英家教网 > 高中数学 > 题目详情
18.如图所示,在四棱锥P-ABCD中,底面是边长为1的正方形,侧棱PD=1,PA=PC=$\sqrt{2}$.
(1)求证:PD⊥平面ABCD;
(2)求证:平面PAC⊥平面PBD.

分析 (1)由勾股定理逆定理可证明AD⊥PD,PD⊥CD即可得出PD⊥平面ABCD;
(2)由(1)可得PD⊥AC,结合AC⊥BD,得出AC⊥平面PBD,从而平面PAC⊥平面PBD.

解答 解:(1)∵PD=1,DC=1,PC=$\sqrt{2}$,
∴PC2=PD2+DC2
∴PD⊥DC.
同理可证PD⊥AD,又AD∩DC=D,
∴PD⊥平面ABCD.
(2)由(1)知PD⊥平面ABCD,∵AC?平面ABCD,
∴PD⊥AC,
∵四边形ABCD是正方形,
∴AC⊥BD,又BD∩PD=D,
∴AC⊥平面PDB.
∵AC?平面PAC,
∴平面PAC⊥平面PBD.

点评 本题考查了线面垂直,面面垂直的判定,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知i是虚数单位,且m(1+i)=7+ni(m,n∈R),则$\frac{m+ni}{2m-ni}$的虚部等于(  )
A.$\frac{1}{7}$B.$\frac{3}{14}$C.$\frac{1}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若直线y=k(x+2)上存在点(x,y)满足$\left\{\begin{array}{l}x-y≥0\\ x+y≤1\\ y≥-1\end{array}\right.$,则实数k的取值范围是(  )
A.$[{-1,-\frac{1}{4}}]$B.$[{-1,\frac{1}{5}}]$C.$({-∞,-1}]∪[{\frac{1}{5},+∞})$D.$[{-\frac{1}{4},\frac{1}{5}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.sin2040°=(  )
A.$-\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足$2\sqrt{3}acsinB={a^2}+{b^2}-{c^2}$.
(1)求角C的大小;
(2)若bsin(π-A)=acosB,且$b=\sqrt{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若f(x)=$\sqrt{k{x}^{2}-6kx+k+8}$的定义域是R,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的长轴长为2$\sqrt{2}$,P为椭圆C上异于顶点的一个动点,O为坐标原点,A2为椭圆C的右顶点,点M为线段PA2的中点,且直线PA2与直线OM的斜率之积为-$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)过椭圆C的左焦点F1且不与坐标轴垂直的直线l交椭圆C于两点A,B,线段AB的垂直平分线与x轴交于点N,N点的横坐标的取值范围是$({-\frac{1}{4},0})$,求线段AB的长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知tanθ=2.
(1)求1+sinθcosθ-cos2θ的值;
(2)若sin(α+θ)=$\frac{2}{3}$,sin(α-θ)=-$\frac{1}{5}$,求tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知角α的终边上一点P(5a,-12a)(a∈R且a≠0),求sinα,cosα,tanα的值.

查看答案和解析>>

同步练习册答案