分析 (1)由正余弦定理化简可得角C的大小;
(2)由bsin(π-A)=acosB,根据正弦定理化简,求出c,即可求出△ABC的面积.
解答 解:(1)在△ABC中,由$2\sqrt{3}acsinB={a^2}+{b^2}-{c^2}$,
由余弦定理:a2+b2-c2=2abcosC,
可得:2$\sqrt{3}$acsinB=2abcosC.
由正弦定理:2$\sqrt{3}$sinCsinB=sinBcosC
∵0<B<π,sinB≠0,
∴2$\sqrt{3}$sinC=cosC,
即tanC=$\frac{\sqrt{3}}{3}$,
∵0<C<π,
∴C=$\frac{π}{6}$.
(2)由bsin(π-A)=acosB,
∴sinBsinA=sinAcosB,
∵0<A<π,sinA≠0,
∴sinB=cosB,
∴$B=\frac{π}{4}$,
根据正弦定理$\frac{b}{sinB}=\frac{c}{sinC}$,可得$\frac{{\sqrt{2}}}{{sin\frac{π}{4}}}=\frac{c}{{sin\frac{π}{6}}}$,
解得c=1,
∴${S_{△ABC}}=\frac{1}{2}bcsinA=\frac{1}{2}×\sqrt{2}×1×sinA=\frac{{\sqrt{2}}}{2}sin({π-B-C})=\frac{{\sqrt{2}}}{2}sin({\frac{π}{4}+\frac{π}{6}})=\frac{{\sqrt{3}+1}}{4}$.
点评 本题考查三角形的正余弦定理和内角和定理的运用,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | (1,0) | B. | (-1,0) | C. | (0,0) | D. | (0,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{15}{8}$ | B. | $\frac{5}{2}$ | C. | $\frac{15}{4}$ | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{5}+1}{2}$ | B. | $\frac{\sqrt{3}+1}{2}$ | C. | $\sqrt{5}$+1 | D. | $\sqrt{3}$+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|2kπ≤x≤2kπ+π,k∈z} | B. | $\left\{{x\left|{2kπ+\frac{π}{4}≤x≤2kπ+\frac{3π}{4},k∈z}\right.}\right\}$ | ||
| C. | {x|kπ≤x≤kπ+π,k∈z} | D. | $\left\{{x\left|{kπ+\frac{π}{4}≤x≤kπ+\frac{3π}{4},k∈z}\right.}\right\}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com