精英家教网 > 高中数学 > 题目详情
2.如图,在四棱锥E-ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.
(1)求B到平面CDE的距离
(2)在线段DE上是否存在一点F,使AF∥平面BCE?若存在,求出$\frac{EF}{ED}$的值;若不存在,说明理由.

分析 (1)说明CD⊥AE,AE⊥ED,推出AE⊥平面CDE,然后求解B到平面CDE的距离.
(2)在线段DE上存在一点F,使AF∥平面BCE,$\frac{EF}{ED}$=$\frac{1}{3}$.设F为线段DE上的一点,且$\frac{EF}{ED}$=$\frac{1}{3}$.过F作FM∥CD交CE于点M,则FM=$\frac{1}{3}CD$,
证明MF$\stackrel{∥}{=}$AB,说明四边形ABMF是平行四边形,即可说明AF∥平面BCE.

解答 (1)解:∵CD⊥平面ADE,∴CD⊥AE,又AE⊥ED,ED∩CD=D,∴AE⊥平面CDE,
又AB∥CD,∴B到平面CDE的距离为AE=3$\sqrt{3}$…(6分)
(2)解:在线段DE上存在一点F,使AF∥平面BCE,$\frac{EF}{ED}$=$\frac{1}{3}$.
下面给出证明:设F为线段DE上的一点,且$\frac{EF}{ED}$=$\frac{1}{3}$.
过F作FM∥CD交CE于点M,则FM=$\frac{1}{3}CD$,
∵CD⊥平面ADE,AB⊥平面ADE,
∴CD∥AB.又CD=3AB,
∴MF$\stackrel{∥}{=}$AB,
∴四边形ABMF是平行四边形,
∴AF∥BM,又AF?平面BCE,BM?平面BCE.
∴AF∥平面BCE.…(12分)

点评 本题考查直线与平面平行,点、线、面距离的求法,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.设变量x,y满足约束条件 $\left\{\begin{array}{l}{x-y≤0}\\{x+y≥0}\\{x+2y≥0}\end{array}\right.$,则z=x-2y的最大值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足$2\sqrt{3}acsinB={a^2}+{b^2}-{c^2}$.
(1)求角C的大小;
(2)若bsin(π-A)=acosB,且$b=\sqrt{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的长轴长为2$\sqrt{2}$,P为椭圆C上异于顶点的一个动点,O为坐标原点,A2为椭圆C的右顶点,点M为线段PA2的中点,且直线PA2与直线OM的斜率之积为-$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)过椭圆C的左焦点F1且不与坐标轴垂直的直线l交椭圆C于两点A,B,线段AB的垂直平分线与x轴交于点N,N点的横坐标的取值范围是$({-\frac{1}{4},0})$,求线段AB的长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如果a∩b=M,a∥平面β,则b与β的位置关系是平行或相交.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知tanθ=2.
(1)求1+sinθcosθ-cos2θ的值;
(2)若sin(α+θ)=$\frac{2}{3}$,sin(α-θ)=-$\frac{1}{5}$,求tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知命题p:指数函数y=(1-a)x是R上的增函数,命题q:不等式ax2+2x-1>0有解.若命题p是真命题,命题q是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.半径为1的扇形AOB,∠AOB=120°,M,N分别为半径OA,OB的中点,P为弧AB上任意一点,则$\overrightarrow{PM}•\overrightarrow{PN}$的取值范围是[$\frac{3}{8}$,$\frac{5}{8}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若复数z=a-2i的实部与虚部相等,则实数a=(  )
A.-1B.1C.-2D.2

查看答案和解析>>

同步练习册答案