精英家教网 > 高中数学 > 题目详情
18.设$\overrightarrow a,\overrightarrow b$都是非零向量,下列四个条件,使$\frac{\overrightarrow a}{|\overrightarrow a|}=\frac{\overrightarrow b}{|\overrightarrow b|}$成立的充要条件是(  )
A.$\overrightarrow a=\overrightarrow b$B.$\overrightarrow a=2\overrightarrow b$C.$\overrightarrow a∥\overrightarrow b$且$|\overrightarrow a|=|\overrightarrow b|$D.$\overrightarrow a∥\overrightarrow b$且方向相同

分析 利用向量共线定理即可判断出结论.

解答 解:$\overrightarrow a,\overrightarrow b$都是非零向量,下列四个条件,使$\frac{\overrightarrow a}{|\overrightarrow a|}=\frac{\overrightarrow b}{|\overrightarrow b|}$成立的充要条件是$\overrightarrow{a}∥\overrightarrow{b}$,且方向相同.
故选:D.

点评 本题考查了向量共线定理、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.在△ABC中,B=45°,C=60°,c=2,则b=$\frac{2\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知A1,A2为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的两个顶点,以A1A2为直径的圆与双曲线的一条渐近线交于M,N两点,若△A1MN的面积为$\frac{a^2}{2}$,则该双曲线的离心率是(  )
A.$\frac{{2\sqrt{2}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{2\sqrt{5}}}{3}$D.$\frac{{2\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.不共线向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,且$\overrightarrow{a}$⊥($\overrightarrow{a}$-2$\overrightarrow{b}$),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数f(x)=x2(x-4)2-a|x-2|+2a有四个零点,则实数a的取值范围是(-8,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,a,b,c分别为角A,B,C的对边,若函数$f(x)=\frac{1}{3}{x^3}+b{x^2}+({a^2}+{c^2}-ac)x+1$有极值点,则∠B的范围是($\frac{π}{3}$,π).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.正方体ABCD-A1B1C1D1的棱长为6,点O在BC上,且BO=OC,过点O的直线l与直线AA1,C1D1分别交于M,N两点,则MN与面ADD1A1所成角的正弦值为(  )
A.$\frac{2}{3}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列四个结论中错误的个数是(  )
①若a=30.4,b=log0.40.5,c=log30.4,则a>b>c
②“命题p和命题q都是假命题”是“命题p∧q是假命题”的充分不必要条件
③若平面α内存在一条直线a垂直于平面β内无数条直线,则平面α与平面β垂直
④已知数据x1,x2,…,xn的方差为3,若数据ax1+1,ax2+1,…axn+1,(a>0,a∈R)的方差为12,则a的值为2.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设集合M={x|y=$\sqrt{lo{g}_{\frac{1}{2}}x-1}$},N={x||x-$\frac{1}{2}$|≤$\frac{1}{4}$},则M∩N=(  )
A.[2,+∞)B.[-1,$\frac{3}{4}$]C.[$\frac{1}{4}$,$\frac{1}{2}$]D.[$\frac{1}{4}$,$\frac{3}{4}$]

查看答案和解析>>

同步练习册答案