分析 (I)利用二倍角和两角和与差以及辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调递增区间;
(Ⅱ)根据f(C)=$\frac{1}{4}$,求出C,a=2,且△ABC的面积为$\sqrt{3}$,求出b,利用余弦定理可得c的值.
解答 解:函数$f(x)=sinxcos({x+\frac{π}{6}})$.
化简可得:f(x)=$\frac{\sqrt{3}}{2}$sinxcosx-$\frac{1}{2}$sin2x=$\frac{\sqrt{3}}{4}$sin2x+$\frac{1}{4}$cos2x-$\frac{1}{4}$=$\frac{1}{2}$sin(2x+$\frac{π}{6}$)$-\frac{1}{4}$.
(I)由$-\frac{π}{2}+2kπ$≤2x+$\frac{π}{6}$≤$\frac{π}{2}+2kπ$,k∈Z.
得:$-\frac{π}{3}+kπ$≤x≤$\frac{π}{6}+kπ$.
∴函数f(x)的单调增区间为[$-\frac{π}{3}+kπ$,$\frac{π}{6}+kπ$],k∈Z.
(Ⅱ)∵f(C)=$\frac{1}{4}$,即$\frac{1}{2}$sin(2C+$\frac{π}{6}$)$-\frac{1}{4}$=$\frac{1}{4}$
可得:2C+$\frac{π}{6}$=$\frac{π}{2}+2kπ$,k∈Z.
∵0<C<π,
∴C=$\frac{π}{6}$.
由a=2,且△ABC的面积为$\sqrt{3}$,即S=$\frac{1}{2}ab$sinC=$\sqrt{3}$,
∴b=2$\sqrt{3}$.
余弦定理:c2=a2+b2-2abcosC,
可得:${c}^{2}=4+12-4×2\sqrt{3}×\frac{\sqrt{3}}{2}$=4.
∴c=2.
点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.本题还考查三角形的正余弦定理的运用,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{2\sqrt{2}}}{3}$ | B. | $\frac{{2\sqrt{3}}}{3}$ | C. | $\frac{{2\sqrt{5}}}{3}$ | D. | $\frac{{2\sqrt{6}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | 20 | C. | 30 | D. | 40 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com