精英家教网 > 高中数学 > 题目详情
11.已知定义在R上的函数f(x)满足f(-x)=-f(x),f(x+1)=f(1-x)且当x∈[0,1]时,f(x)=log2(x+1),则f(31)=-1.

分析 根据函数奇偶性和条件求出函数是周期为4的周期函数,利用函数周期性和奇偶性的关系进行转化即可得到结论.

解答 解:∵奇函数f(x)满足f(x+1)=f(1-x),
∴f(x+1)=f(1-x)=-f(x-1),即有f(x+2)=-f(x),
则f(x+4)=-f(x+2)=f(x),
即函数f(x)是周期为4的函数,
∵当x∈[0,1]时,f(x)=log2(x+1),
∴f(31)=f(32-1)=f(-1)=-f(1)=-log22=-1,
故答案为:-1.

点评 本题主要考查函数值的计算,根据条件求出函数的周期性,利用函数的奇偶性和周期性进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知中心在坐标原点,焦点在x轴上的椭圆过点A(-3,0),且离心率$e=\frac{{\sqrt{5}}}{3}$,则椭圆的标准方程是(  )
A.$\frac{x^2}{9}+\frac{{4{y^2}}}{81}=1$B.$\frac{x^2}{4}+\frac{y^2}{9}=1$C.$\frac{{4{x^2}}}{81}+\frac{y^2}{9}=1$D.$\frac{x^2}{9}+\frac{y^2}{4}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知P是边长为2的等边三角形ABC的边BC上的动点,则$\overrightarrow{AP}•({\overrightarrow{AB}+\overrightarrow{AC}})$的值下列判断正确的是(  )
A.有最大值为8B.是定值8C.有最大值为6D.是定值6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若变量x,y满足约束条件$\left\{\begin{array}{l}{x-y≤0}\\{x+y≤2}\\{x≥0}\end{array}\right.$,则z=x+2y的最大值为(  )
A.0B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=lnx+$\frac{2a}{x+1}$,a∈R.
(Ⅰ)若函数f(x)在(0,+∞)上为单调增函数,求a的取值范围;
(Ⅱ)设m>n>0,求证:lnm-lnn>$\frac{2(m-n)}{m+n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=lnx+ln(2-x),则(  )
A.y=f(x)的图象关于点(1,0)对称B.f(x)在(0,2)单调递减
C.y=f(x)的图象关于直线x=1对称D.f(x)在(0,2)单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=cosx(sinx+$\sqrt{3}$cosx)-$\frac{\sqrt{3}}{2}$,x∈R.
(1)求f(x)的最小正周期和单调递增区间;
(2)x∈[-$\frac{π}{3}$,$\frac{π}{3}$],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知直线l1:3x+4y-3=0,直线l2:6x+8y-1=0(b∈R)平行,则它们之间的距离为(  )
A.2B.$\frac{1}{5}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=sinxcos({x+\frac{π}{6}})$.
(I)求函数f(x)的单调增区间;
(Ⅱ)△ABC的内角A,B,C所对的边分别是a,b,c,若f(C)=$\frac{1}{4}$,a=2,且△ABC的面积为$\sqrt{3}$,求c的值.

查看答案和解析>>

同步练习册答案