精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=lnx+ln(2-x),则(  )
A.y=f(x)的图象关于点(1,0)对称B.f(x)在(0,2)单调递减
C.y=f(x)的图象关于直线x=1对称D.f(x)在(0,2)单调递增

分析 利用对数的运算性质化简f(x)解析式,利用二次函数的对称性

解答 解:f(x)的定义域为(0,2),
f(x)=ln(2x-x2),
令y=2x-x2=-(x-1)2+1,则y=2x-x2关于直线x=1对称,
∴y=f(x)的图象关于直线x=1对称,故A错误,C正确;
∴y=f(x)在(0,1)和(1,2)上单调性相反,故B,D错误;
故选C.

点评 本题考查了对数的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200.220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图示.
(Ⅰ)求直方图中x的值;
(Ⅱ)求月平均用电量的众数和中位数;
(Ⅲ)在月平均用电量为[220,240),[240,260),[260,280)的三组用户中,用分层抽样的方法抽取10户居民,则月平均用电量在[220,240)的用户中应抽取多少户?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设f(x)=sinx+2xf'($\frac{π}{3}$),f'(x)是f(x)的导函数,则f'($\frac{π}{2}$)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知圆心为(0,1),半径为R的圆M与直线x+my-2m-1=0(x∈R)相切,当半径R最大时,圆M的标准方程为x2+(y-1)2=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知定义在R上的函数f(x)满足f(-x)=-f(x),f(x+1)=f(1-x)且当x∈[0,1]时,f(x)=log2(x+1),则f(31)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{1}{2}{x^2}$-a1nx+b(a,b∈R).
(Ⅰ)若曲线y=f(x)在x=1处的切线的方程为3x-y-3=0,求实数a,b的值;
(Ⅱ)若-2≤a<0,对任意x1,x2∈(0,2],不等式|f(x1)-f(x2)|≤m|$\frac{1}{x_1}-\frac{1}{x_2}$|恒成立,求实数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,B=45°,C=60°,c=2,则b=$\frac{2\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设F1,F2是双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右焦点,M是C上一点,O是坐标原点,若|MF1|=2|MF2|,|MF2|=|OF2|,则C的离心率是(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{5}{2}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.不共线向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,且$\overrightarrow{a}$⊥($\overrightarrow{a}$-2$\overrightarrow{b}$),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{3}$.

查看答案和解析>>

同步练习册答案