精英家教网 > 高中数学 > 题目详情
11.已知一条抛物线的焦点是直线l:y=-x-t(t>0)与x轴的交点,若抛物线与直线l交两点A,B,且$|{AB}|=2\sqrt{6}$,则t=$\frac{{\sqrt{6}}}{4}$.

分析 当y=0,求得焦点坐标求得抛物线方程,将直线代入抛物线方程,利用韦达定理及抛物线的焦点弦公式,即可求得t的值.

解答 解:当y=0时,x=-t,则抛物线的焦点F(-t,0),
则抛物线方程y2=-4tx,设A,B的坐标为(x1,y1),(x2,y2),
由$\left\{\begin{array}{l}{{y}^{2}=-4tx}\\{y=-x-t}\end{array}\right.$,整理得:x2+6tx+t2=0,
则x1+x2=-6t,
则丨AB丨=丨x1+x2-2t丨=8t=2$\sqrt{6}$,
∴t=$\frac{{\sqrt{6}}}{4}$,
故答案为:$\frac{{\sqrt{6}}}{4}$.

点评 本题考查抛物线的标准方程,直线与抛物线的位置关系,考查韦达定理,弦长公式的应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=sinxcos({x+\frac{π}{6}})$.
(I)求函数f(x)的单调增区间;
(Ⅱ)△ABC的内角A,B,C所对的边分别是a,b,c,若f(C)=$\frac{1}{4}$,a=2,且△ABC的面积为$\sqrt{3}$,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在四棱锥P-ABCD中,底面ABCD为平行四边形,AB=3,$AD=2\sqrt{2}$,∠ABC=45°,P点在底面ABCD内的射影E在线段AB上,且PE=2,BE=2EA,M在线段CD上,且$CM=\frac{2}{3}CD$. 
(Ⅰ)证明:CE⊥平面PAB;
(Ⅱ)在线段AD上确定一点F,使得平面PMF⊥平面PAB,并求三棱锥P-AFM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={(x,y)|y=x+1,0≤x≤1},集合B={(x,y)|y=2x,0≤x≤10},则集合A∩B=(  )
A.{1,2}B.{x|0≤x≤1}C.{(1,2)}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.sin2040°=(  )
A.$-\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知直线x-2y+2k=0与两坐标轴所围成的三角形的面积为1,则实数k值是±1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若f(x)=$\sqrt{k{x}^{2}-6kx+k+8}$的定义域是R,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某几何体的三视图如图所示,设正方形的边长为a,则该三棱锥的表面积为(  )
A.a2B.$\sqrt{3}{a^2}$C.$\frac{{\sqrt{3}}}{6}{a^2}$D.$2\sqrt{3}{a^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知z∈C,且|z|=1,则|z-2i|(i为虚数单位)的最小值是1.

查看答案和解析>>

同步练习册答案