精英家教网 > 高中数学 > 题目详情
已知在等差数列{an}中,a1=31,Sn是它的前n项和,S10=S22
(1)求Sn
(2)这个数列的前多少项的和最大,并求出这个最大值.
(3)求数列{|an|}的前n项和.
考点:数列的求和,等差数列的性质
专题:点列、递归数列与数学归纳法
分析:(1)根据等差数列的通项公式,求出公差即可求Sn
(2)法1:求出数列的通项公式,根据等差数列的性质,法2:求出数列的前n项和,利用二次函数的图象和性质进行求解.
(3)求出数列{|an|}的通项公式,即可求出结论.
解答: 解:(1)∵S10=a1+a2+…+a10,S22=a1+a2+…+a22,又S10=S22
∴a11+a12+…+a22=0,又a1=31,
解得d=-2,
则Sn=na1+
n(n-1)
2
d=31n-n(n-1)
=32n-n2
(2)法一:由(1)知Sn=32n-n2,故当n=16时,Sn有最大值,Sn的最大值是256.
法二:由(1)知:an=31+(n-1)(-2)=-2n+33(n∈N*)⇒a1>a2>a3>…>a16>0>a17>a18>…
∴,当且仅当n=16时,Sn有最大值,Sn的最大值是S16=32×16-162=256
(3)由(1)知:an=31+(n-1)(-2)=-2n+33(n∈N*)
数列{|an|}的前n项和Tn=|a1|+|a2|+|a3|+…+|an|
①当n≤16时,有Tn=|a1|+|a2|+|a3|+…+|an|=a1+a2+a3+…+an=Sn=32n-n2
②当n≥17时,有Tn=|a1|+|a2|+|a3|+…+|an|=a1+a2+a3+…+a16-a17-a18-…-an=S16-(Sn-S16)=-Sn+2S16=n2-32n+512
综上Tn=
32n-n2n≤16
n2-32n+512 ,n≥17
点评:本题主要考查等差数列的通项公式以及前n项和的计算,考查学生的计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

利用数学归纳法证明不等式1+
1
2
+
1
3
+…
1
2n-1
<f(n) (n≥2,n∈N*)的过程中,由n=k变到n=k+1时,左边增加了(  )
A、2项
B、k项
C、2k-1
D、2k

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点F(
3
,0),且椭圆C经过点P(
3
1
2
 ).
(1)求椭圆C的方程;
(2)设过点F的直线l交椭圆C于A,B两点,交直线x=m(m>a)于M点,若kPA,kPM,kPB成等差数列,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2
ex

(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若方程f(x)=m有且只有一个解,求实数m的取值范围;
(Ⅲ)当x1≠x2且x1,x2∈(-∞,2]时,若有f(x1)=f(x2),求证:x1+x2>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

求(
x
-
3x
9展开式中的x4项.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了让更多的人参与2010年在上海举办的“世博会”,上海某旅游公司面向国内外发行总量为2000万张的旅游优惠卡,其中向境外人士发行的是世博金卡(简称金卡),向境内人士发行的是世博银卡(简称银卡).现有一个由36名游客组成的旅游团到上海参观旅游,其中
3
4
是境外游客,其余是境内游客.在境外游客中有
1
3
持金卡,在境内游客中有
2
3
持银卡.
(1)在该团的境内游客中随机采访3名游客,求其中持银卡人数恰为2人的概率;
(2)在该团中随机采访3名游客,求恰有1人持金卡且持银卡者少于2人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知M={x|-2<x<7},N={x|a+1≤x≤2a-1}. 
(1)当实数a=5时,求M∩N;
(2)是否存在实数a使得M∪N=M,若不存在,请说明理由,若存在,求出a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
b
的夹角为60°,
a
=(2,0),|
b
|=1,
(1)求
a
b
;        
(2)求|
a
+2
b
|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在底面为平行四边形的四棱锥P-ABCD中,点E是PD的中点.
求证:PB∥平面AEC.

查看答案和解析>>

同步练习册答案