精英家教网 > 高中数学 > 题目详情
15.△ABC中,角A,B,C所对的边分别为a,b,c,若b=$\sqrt{3}$,c=$\sqrt{2}$,B=60°,则C=(  )
A.135°B.45°C.135°或45°D.30°

分析 由已知利用正弦定理可求sinC,结合C的范围,由特殊角的三角函数值即可得解.

解答 解:∵b=$\sqrt{3}$,c=$\sqrt{2}$,B=60°,
∴由正弦定理可得:sinC=$\frac{csinB}{b}$=$\frac{\sqrt{2}×\frac{\sqrt{3}}{2}}{\sqrt{3}}$=$\frac{\sqrt{2}}{2}$,
∵c<b,可得C 为锐角,
∴C=45°.
故选:B.

点评 本题主要考查了正弦定理,大边对大角,特殊角的三角函数值在解三角形中的简单应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知正实数a,b满足a+2b=4,则ab的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.甲、乙两名射击运动员进行射击比赛,射击次数相同,已知两名运动员击中的环数X稳定在7环、8环、9环、10环,他们比赛成绩的统计结果如下:
78910
0.20.150.3
0.20.20.35
请你根据上述信息,解决下列问题:
(Ⅰ)估计甲、乙两名射击运动员击中的环数都不少于9环的概率;
(Ⅱ)若从甲、乙运动员中只能挑选一名参加某大型比赛,请你从随机变量均值意义的角度,谈谈让谁参加比较合适?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知直线l:x+ay+2=0的倾斜角为$\frac{3π}{4}$,则直线l在y轴上的截距为(  )
A.-2B.2C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,a,b,c是角A、B、C的对边,且a=2csinA,c<a.
(1)求角C的度数;
(2)若a=$\frac{2\sqrt{3}}{3}$b,且△ABC的面积为$\frac{\sqrt{3}}{2}$,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x3-x-1.
(1)求曲线y=f(x)在点(1,-1)处的切线方程;
(2)如果曲线y=f(x)的某一切线与直线y=-$\frac{1}{2}$x+3垂直,求切点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设点P(x,y)在不等式组$\left\{\begin{array}{l}{x+2y≤4}\\{x≤2}\\{x+y≥2}\end{array}\right.$表示的平面区域内(含边界),则x2+y2的最小值为(  )
A.8B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知平面上不共线的四点O、A、B、C,若$\overrightarrow{OA}$+5$\overrightarrow{OB}$=6$\overrightarrow{OC}$,则$\frac{|\overrightarrow{AB}|}{|\overrightarrow{BC}|}$=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知三棱锥D-ABC的底面ABC为等边三角形,AB=CD=2,AD=BD=$\sqrt{2}$.
(Ⅰ)求证:平面ABC⊥平面ABD;
(Ⅱ)试求二面角A-CD-B的余弦值;
(Ⅲ)在CD上存在一点E,使二面角D-AB-E的大小为$\frac{π}{3}$,求$\frac{DE}{EC}$的值.

查看答案和解析>>

同步练习册答案