精英家教网 > 高中数学 > 题目详情
讨论关于x的方程:x2+a=0的根的个数.
考点:根的存在性及根的个数判断
专题:函数的性质及应用
分析:讨论a的范围,即可得到结论.
解答: 解:由x2+a=0得x2=-a,
若a>0,此时方程无解,此时方程根的个数为0个.
若a=0,则x=0,此时方程根的个数为1个.
若a<0,则方程有两个根,此时方程根的个数为2个.
点评:本题主要考查方程根的个数的判断,根据一元二次方程方程根的情况,是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的两焦点分别为F1,F2,A(-
3
1
2
)为椭圆上一点,且AF1⊥x轴.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知命题:“已知M是椭圆C上异于左右顶点A1,A2的一点,直线MA1,MA2分别交直线l:x=m(m为常数)于不同两点P,Q,点N在直线l上,若直线MN与椭圆C有且只有一个公共点M,则N为线段PQ的中点”,试写出此命题的逆命题,判断所写命题的真假,若为真命题,请你给出证明;若为假命题,请说明理由;
(Ⅲ)根据(Ⅱ)研究的结果,类似地,请你写出双曲线中的一个命题(不需证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

为了调查甲、乙两种品牌商品的市场认可度,在某购物网点随机选取了14天,统计在某确定时间段的销量,得如图所示的统计图,根据统计图求:
(1)甲、乙两种品牌商品销量的中位数分别是多少?
(2)甲品牌商品销量在[20,50]间的频率是多少?
(3)甲、乙两个品牌商品哪个更受欢迎?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
a2
=1(a>b>0)的长轴的一个端点为A(2,0),离心率为
2
2
.直线y=k(x-1)与椭圆C交于不同的两点B、D
(1)求椭圆C的方程;
(2)是否存在这样的直线,使得△ABD的面积为
10
3
,若存在,求出直线方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,且x∈[0,+∞)时,f(x)=x(1-x),求f(x)在R上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
25
9
-(
8
27
 
1
3
-(π+e)0+(
1
4
 -
1
2

②2lg5+lg4+ln
e

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,ABCD是正方形空地,边长为30m,电源在点P处,点P到边AD、AB距离分别为9m,3m.某广告公司计划在此空地上竖一块长方形液晶广告屏幕MNEF,MN:NE=16:9.线段MN必须过点P,端点M,N分别在边AD,AB上,设AN=x(m),液晶广告屏幕MNEF的面积为S(m2).
(1)用x的代数式表示AM,并写出x的取值范围;
(2)求S关于x的函数关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设有5幅不同的国画,2幅不同的油画,7幅不同的水彩画.
(1)从这些国画、油画、水彩画中各选一幅画布置房间,有几种不同的选法?
(2)从这些画中任选出两幅不同画种的画布置房间,有几种不同的选法?

查看答案和解析>>

科目:高中数学 来源: 题型:

1+log2x=2log2(x-a)恰有一个实数解,则a的取值范围为
 

查看答案和解析>>

同步练习册答案