精英家教网 > 高中数学 > 题目详情
2.由y=$\frac{1}{x}$-1,y=0,x=2所对应的曲线围成的封闭图形的面积为(  )
A.ln2-$\frac{1}{2}$B.$\frac{1}{2}$-ln2C.1-ln2D.ln2-1

分析 求出积分的上限和下限,利用积分的几何意义进行求解即可.

解答 解:由y=$\frac{1}{x}$-1=0,解得x=1,
则对应封闭曲线的面积S=${∫}_{1}^{2}$[0-($\frac{1}{x}$-1)]dx=(x-lnx)|${\;}_{1}^{2}$=2-ln2-(1-ln1)=1-ln2,
故选:C.

点评 本题主要考查曲线面积的求解,利用积分的几何意义求积分是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lnx-ax2
(I)求f(x)的单调区间;
(Ⅱ)设g(x)=f(x)-x+1(a≥0),l是曲线y=g(x)的一条切线,证明:曲线y=g(x)上的任意一点都不能在直线l的上方;
(Ⅲ)当a=1时,方程2m[x+f(x)]=(1-2m)x2有唯一实数解,求正数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数y=$\frac{1}{2}$sin2x+acosx在区间(0,π)上是增函数,则实数a的取值范围是(  )
A.(-∞,-l]B.[-1,+∞)C.(-∞,0)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,若∠OFB=$\frac{π}{6}$,$\overrightarrow{OF}•\overrightarrow{FB}$=-6,则以OA为长半轴,OB为短半轴,F为左焦点的椭圆的标准方程为$\frac{{x}^{2}}{8}$$+\frac{{y}^{2}}{2}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=-\sqrt{5}+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(其中t为参数)以O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标,曲线C的极轴方程为ρ=4cosθ.
(Ⅰ)求曲线C的直角坐标方程及直线l的普通方程;
(Ⅱ)将曲线C上所有点的横坐标缩短为原来的$\frac{1}{2}$(纵坐标不变),再将所得曲线向左平移1个单位,得到曲线C1,求曲线C1上的到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,已知a=1,b=1,c=$\sqrt{3}$,则∠C=(  )
A.120°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知实数x,y满足$\left\{\begin{array}{l}{x-2y+1≥0}\\{x<2}\\{x+y-1≥0}\end{array}\right.$,则z=2x-2y-3的取值范围是(  )
A.[-$\frac{1}{3}$,3]B.[-2,3]C.[-$\frac{1}{3}$,3)D.$[-\frac{11}{3},3)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow m=({sin\frac{x}{3},-1})$,$\overrightarrow n=({\frac{{\sqrt{3}}}{2}A,\frac{1}{2}Acos\frac{x}{3}}),(A>0)$,函数f(x)=$\overrightarrow n•\overrightarrow m$的最大值为2.
(1)求f(x)的最小正周期和解析式;
(2)设α,β∈[0,$\frac{π}{2}$],f(3α+$\frac{π}{2}$)=$\frac{10}{13}$,f(3β+2π)=$\frac{6}{5}$,求sin(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.方程$\frac{{x}^{2}}{3-m}$-$\frac{{y}^{2}}{m+2}$=1表示双曲线,则m的取值范围是-2<m<3.

查看答案和解析>>

同步练习册答案