精英家教网 > 高中数学 > 题目详情
14.方程$\frac{{x}^{2}}{3-m}$-$\frac{{y}^{2}}{m+2}$=1表示双曲线,则m的取值范围是-2<m<3.

分析 方程$\frac{{x}^{2}}{3-m}$-$\frac{{y}^{2}}{m+2}$=1表示双曲线,可得(3-m)(m+2)>0,解不等式,可得m的取值范围.

解答 解:由题意,(3-m)(m+2)>0,
所以-2<m<3,
故答案为:-2<m<3.

点评 本题考查双曲线方程,考查解不等式,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.由y=$\frac{1}{x}$-1,y=0,x=2所对应的曲线围成的封闭图形的面积为(  )
A.ln2-$\frac{1}{2}$B.$\frac{1}{2}$-ln2C.1-ln2D.ln2-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.寒假期间,很多同学都喜欢参加“迎春花市摆档口”的社会实践活动,下表是今年某个档口某种精品的销售数据.
日期2月14日2月15日2月16日2月17日2月18日
销售量(件)白天3532433951
晚上4642505260
已知摊位租金900元/档,售余精品可以以进货价退回厂家.
(1)画出表中10个销售数据的茎叶图,并求出这组数据的中位数;
明年花市期间甲、乙两位同学想合租一个摊位销售同样的精品,其中甲、乙分别承包白天、晚上的精品销售,承包时间段内销售所获利润归承包者所有.如果其它条件不变,以今年的数据为依据,甲、乙两位同学应如何分担租金才较为合理?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设不等式组$\left\{\begin{array}{l}{x-2y+2≥0}\\{x≤4}\\{y≥-2}\end{array}\right.$表示的平面区域为D,则区域D的面积为25.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知a,b∈R,函数f(x)=x2+ax+1,且f(x+1)在定义域上是偶函数,函数g(x)=-bf[f(x+1)]+(3b-1)f(x+1)+2在(-∞,-2)上是减函数,在(-2,0)上是增函数.
(1)求a,b的值;
(2)如果在区间(-∞,-1)上存在函数F(x),满足F(x)•f(x+1)=g(x),当x取何值时,F(x)取得最小值,试求该最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知一次函数f(x)满足f(1)=2f(2)=3,判断函数g(x)=-1+lgf2(x)在区间[0,9]上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若$(\begin{array}{l}{2}&{0}\\{-1}&{3}\end{array})$$(\begin{array}{l}{x}\\{y}\end{array})$=$(\begin{array}{l}{-2}\\{10}\end{array})$,则x+y=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示,该四棱锥侧面积是(  ) 
A.6$\sqrt{5}$B.4($\sqrt{5}$+1)C.4$\sqrt{5}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.下列数表中各数均为正数,且各行依次成等差数列,各列依次成等比数列,公比均相等,已知a11=1,a23=14,a32=16;
a11  a12  a13  …a1n
a21  a22  a23  …a2n

an1 an2 an3 …anm
(1)求数列{an1}的通项公式;
(2)设bn=$\frac{{a}_{1n}}{{a}_{{n}_{1}}}$,Tn为数列{bn}的前n项和,若Tn<m2-7m对一切nN*都成立,求最小的正整数m的值.

查看答案和解析>>

同步练习册答案