精英家教网 > 高中数学 > 题目详情

【题目】近年来我国电子商务行业迎来蓬勃发展的新机遇相关管理部门推出了针对电商的商品和服务的评价体系.现从评价系统中选出次成功交易,并对其评价进行统计爱,商品和服务评价的列联表如下表:

对服务好评

对服务不满意

合计

对商品好评

对商品不满意

合计

(1)是否可以在犯错误概率不超过的前提下,认为商品好评与服务好评有关?

(2)若将频率视为概率,某人在该购物平台上进行的次购物中,设对商品和服务全好评的次数为随机变量,求的数学期望.

参考数据:

,其中

【答案】(1)可以(2)见解析

【解析】试题分析:)由已知列出关于商品和服务评价的2×2列联表,代入公式求得k2的值,对应数表得答案;

(2)每次购物时,对商品和服务全好评的概率为0.4,且X的取值可以是0,1,2,3,XB(3,0.4).求出相应的概率,可得对商品和服务全好评的次数X的分布列(概率用组合数算式表示);利用二项分布的数学期望和方差求X的数学期望.

试题解析:

解:(1),可以在犯错误概率不超过的前提下,认为商品好评与服务好评有关.

(2)由题意的取值可以是.每次购物时,对商品和服务都好评的概率为

所以 .

的分布列为:

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数.

(1)当 时,求的单调减区间;

(2)时,函数,若存在,使得恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线C1 ( t 为参数),曲线C2 (r>0,θ为参数).

(1)当r=1时,求C 1 与C2的交点坐标;

(2)点P 为曲线 C2上一动点,当r=时,求点P 到直线C1距离最大时点P 的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD与BDEF均为菱形,∠DAB=∠DBF=60°,且FA=FC.

(Ⅰ)求证:AC⊥平面BDEF;

(Ⅱ)求证:FC∥平面EAD;

(Ⅲ)求二面角A﹣FC﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,

续保人本年度的保费与其上年度出险次数的关联如下:

上年度出险次数

0

1

2

3

4

保费

随机调查了该险种的400名续保人在一年内的出险情况,得到如下统计表:

出险次数

0

1

2

3

4

频数

120

100

60

60

40

20

A为事件:“一续保人本年度的保费不高于基本保费”.的估计值;

(Ⅱ)B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的190%”.

的估计值;

(III)求续保人本年度的平均保费估计值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一种计算装置,有一数据入口A和一个运算出口B,按照某种运算程序:①当从A口输入自然数1时,从B口得到 ,记为 ;②当从A口输入自然数n(n≥2)时,在B口得到的结果f(n)是前一个结果f(n﹣1)的 倍. (Ⅰ)当从A口分别输入自然数2,3,4时,从B口分别得到什么数?
(Ⅱ)根据(Ⅰ)试猜想f(n)的关系式,并用数学归纳法证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数中,表示同一个函数的是(
A.y= 与y=x+1
B.y=lgx与y= lgx2
C.y= ﹣1与y=x﹣1
D.y=x与y=logaax(a>0且a≠1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的参数方程为 (t为参数),以原点O为极点,以x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=﹣
(1)求曲线C1的普通方程与曲线C2的直角坐标方程;
(2)若C1上的点P对应的参数为t= ,Q为C2上的动点,求PQ中点M到直线C3 (α为参数)距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个函数中,在(0,+∞)上为增函数的是(
A.f(x)=3﹣x
B.f(x)=x2﹣3x
C.f(x)=﹣
D.f(x)=﹣|x|

查看答案和解析>>

同步练习册答案