精英家教网 > 高中数学 > 题目详情
11.如图,直线l⊥平面α,垂足为O,已知边长为2的等边三角形ABC在空间做符合以下条件的自由运动:①A∈l,②C∈α,则B,O两点间的最大距离为(  )
A.$1+\sqrt{2}$B.$2+\sqrt{2}$C.$1+\sqrt{3}$D.$2+\sqrt{3}$

分析 先将原问题转化为平面内的最大距离问题解决,以O为原点,OA为y轴,OC为x轴建立直角坐标系,B、O两点间的距离表示处理,结合三角函数的性质求出其最大值即可.

解答 解:将原问题转化为平面内的最大距离问题解决.
以O为原点,OA为y轴,OC为x轴建立直角坐标系,如图.
设∠ACO=θ,B(x,y),则有:
x=ACcosθ+BCcos(120°-θ)=cosθ+$\sqrt{3}$sinθ,
y=BCsin(120°-θ)=sinθ+$\sqrt{3}$cosθ.
∴x2+y2=4+2$\sqrt{3}$sin2θ,
∴当sin2θ=1时,x2+y2最大,为4+2$\sqrt{3}$,
则B、O两点间的最大距离为1+$\sqrt{3}$
故选:C.

点评 本题考查了点、线、面间的距离计算,解答关键是将空间几何问题转化为平面几何问题解决,利用三角函数的知识求最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.执行如图所示的程序框图,若输出的结果为4,则输入p的取值范围是($\frac{3}{4}$,$\frac{7}{8}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆C经过点A(0,2)和B(2,-2),且圆心C在直线l:x-y+1=0上.
(1)求圆C的方程;
(2)若直线m过点(1,4),且被圆C截得的弦长为6,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)=a|x-2|,若f(f(x))<f(x)恒成立,则a的取值范围为(  )
A.a≤-1B.-2<a<0C.0<a<2D.a≥1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=cos2(x+$\frac{π}{4}$),a=f(lg8),b=f(lg$\frac{1}{8}$),则(  )
A.a+b=0B.a-b=0C.a+b=1D.a-b=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是梯形,其中AD∥BC,BA⊥AD,AC与BD交于点O,M是
AB边上的点,且AM=2BM,已知PA=AD=4,AB=3,BC=2.
(1)求平面PMC与平面PAD所成锐二面角的正切;
(2)已知N是PM上一点,且ON∥平面PCD,求$\frac{PN}{PM}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=-4+cosθ}\\{y=sinθ}\end{array}\right.$,θ∈[π,2π],若以坐标原点O为极点,x轴正半轴为极轴,曲线C2的极坐标方程为$ρsin({θ+\frac{π}{4}})=\sqrt{2}({ρ>0,θ∈[{0,\frac{π}{2}}]})$,那么C1上的点到曲线C2上的点的距离的最小值为$2\sqrt{5}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某三棱锥的正视图如图所示,则下列图①②③④,所有可能成为这个三棱锥的俯视图的是(  )
A.①②③B.①②④C.②③④D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\left\{\begin{array}{l}\frac{2x+1}{{x}^{2}},x∈(-∞,-\frac{1}{2})\\ ln(x+1),x∈[-\frac{1}{2},+∞)\end{array}\right.$,g(x)=x2-4x-4,对于任意的a∈R,存在实数b使得f(a)+g(b)=0,则b的取值范围是(  )
A.[ln$\frac{1}{2}$,+∞)B.(-1,ln$\frac{1}{2}$]C.(-1,5)D.[-1,5]

查看答案和解析>>

同步练习册答案