精英家教网 > 高中数学 > 题目详情
2.已知圆C经过点A(0,2)和B(2,-2),且圆心C在直线l:x-y+1=0上.
(1)求圆C的方程;
(2)若直线m过点(1,4),且被圆C截得的弦长为6,求直线m的方程.

分析 (1)设出圆心的坐标,利用半径相等求得t,进而利用两点的距离公式求得半径,则圆的方程可得.
(2)先看斜率不存在时是否符合.进而看斜率存在时设出直线m的方程,利用点到直线和距离和勾股定理建立等式求得k,则直线的方程可得.

解答 (1)解:设圆心的坐标为(t,t+1),
则有t2+(t-1)2=(t-2)2+(t+3)2
整理求得t=-3,
故圆心为(-3,-2),r2=t2+(t-1)2=25,
则圆的方程为(x+3)2+(y+2)2=25.
(2)当直线m的斜率不存在时,方程为x=1,被圆截得的弦长2d=2×$\sqrt{25-16}$=6,符合,
当直线的斜率不存在时,设直线m的方程为y-4=k(x-1)整理得,kx-y+4-k=0,
圆心到直线的距离为$\frac{|-3k+2+4-k|}{\sqrt{{k}^{2}+1}}$=$\sqrt{25-9}$=4,求得k=$\frac{5}{12}$.
则直线的方程为$\frac{5}{12}$x-y+$\frac{43}{12}$=0,
综合知直线m的方程为x=1或$\frac{5}{12}$x-y+$\frac{43}{12}$=0.

点评 本题主要考查了直线的圆的问题的综合运用.利用数形结合思想是解决问题的常用办法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设F1,F2分别为椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,过F1的直线交椭圆于M,N两点,且|F2M|+|F2N|=5,|MN|=3,椭圆的离心率e=$\frac{1}{2}$.
(1)求椭圆的方程;
(2)过椭圆的右焦点F2且互相垂直的直线l1,l2分别与椭圆交于A,B和C,D,是否存在实数t,使得$\frac{1}{|AB|}$+$\frac{1}{|CD|}$=t恒成立?若存在,求出实数t的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.若函数f(x)=sinxcosx+a(sinx+cosx)的定义域为[0,$\frac{π}{2}$],若a≥-1,且函数f(x)的最大值比最小值大$\frac{\sqrt{2}}{2}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.比较y1=40.9,y2=80.48,y3=($\frac{1}{2}$)-1.5大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.两条平行的直线分别经过点A(3,0),B(0,4),它们之间的距离d满足的条件是(  )
A.0<d≤3B.0<d≤5C.0<d≤4D.3<d≤5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知点P到点A(-2,0)的距离是点P到点B(1,0)的距离的2倍.
(Ⅰ)求点P的轨迹方程;
(Ⅱ)设点P的坐标为(x,y),求$\frac{y-2}{x-1}$的取值范围;
(Ⅲ)若点P与点Q关于点(2,1)对称,点C(3,0),求|QA|2+|QC|2的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某流程图如图所示,现输入如下四个函数,则可以输出f(x)的是(  )
A.f(x)=-x2+1B.f(x)=x+$\frac{1}{x}$C.f(x)=lg$\frac{1+x}{1-x}$D.f(x)=$\frac{{2}^{x}+1}{{2}^{x}-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,直线l⊥平面α,垂足为O,已知边长为2的等边三角形ABC在空间做符合以下条件的自由运动:①A∈l,②C∈α,则B,O两点间的最大距离为(  )
A.$1+\sqrt{2}$B.$2+\sqrt{2}$C.$1+\sqrt{3}$D.$2+\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.有3个学习兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(  )
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案