| A. | [ln$\frac{1}{2}$,+∞) | B. | (-1,ln$\frac{1}{2}$] | C. | (-1,5) | D. | [-1,5] |
分析 利用基本不等式和对数函数的单调性,求出函数f(x)值域,进而根据存在a∈R使得f(a)+g(b)=0,得到g(b)=b2-4b-4≤1,解不等式可得实数b的取值范围.
解答 解:当x<-$\frac{1}{2}$时,2x+1<0,令t=2x+1,则t<0,且x=$\frac{t-1}{2}$,
则$\frac{2x+1}{{x}^{2}}$=$\frac{t}{(\frac{t-1}{2})^{2}}$=$\frac{t}{\frac{1}{4}({t}^{2}-2t+1)}$=$\frac{4}{t+\frac{1}{t}-2}$,
∵t<0,∴t+$\frac{1}{t}$≤-2,t+$\frac{1}{t}$-2≤-4,
即$\frac{4}{t+\frac{1}{t}-2}$∈[-1,0),
当x≥-$\frac{1}{2}$,ln(x+1)≥ln(-$\frac{1}{2}$+1)=ln$\frac{1}{2}$,
综上f(x)≥-1.
存在实数b使得f(a)+g(b)=0,
则g(b)=-f(a),
则满足g(b)=b2-4b-4≤1,
即b2-4b-5≤0,
解得-1≤b≤5,
故b的取值范围是[-1,5],
故选:D
点评 本题考查的知识点是分段函数,函数的值域,基本不等式,对数函数的性质,存在性问题,二次不等式,是函数和不等式较为综合的应用.
科目:高中数学 来源: 题型:选择题
| A. | $1+\sqrt{2}$ | B. | $2+\sqrt{2}$ | C. | $1+\sqrt{3}$ | D. | $2+\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 锐角三角形 | B. | 直角三角形 | C. | 钝角三角形 | D. | 随x、m、n的值而定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(sinα)>f(cosβ) | B. | f(sinα)>f(sinβ) | C. | f(sinα)<f(cosβ) | D. | f(cosα)>f(cosβ) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com