精英家教网 > 高中数学 > 题目详情
16.已知sinx=$\frac{4}{5}$,x∈($\frac{π}{2}$,π),则tan(x-$\frac{π}{4}$)=7•

分析 由条件利用同角三角函数的基本关系求得tanx的值,再利用两角差的正切公式求得tan(x-$\frac{π}{4}$)的值.

解答 解:∵sinx=$\frac{4}{5}$,x∈($\frac{π}{2}$,π),∴cosx=-$\frac{3}{5}$,∴tanx=$\frac{sinx}{cosx}$=-$\frac{4}{3}$,
∴tan(x-$\frac{π}{4}$)=$\frac{tanx-1}{1+tanx}$=$\frac{-\frac{7}{3}}{-\frac{1}{3}}$=7,
故答案为:7.

点评 本题主要考查同角三角函数的基本关系、以及三角函数在各个象限中的符号,两角差的正切公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=cos2(x+$\frac{π}{4}$),a=f(lg8),b=f(lg$\frac{1}{8}$),则(  )
A.a+b=0B.a-b=0C.a+b=1D.a-b=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设等差数列 {an}的前n项和为Sn,若S12=288,S9=162,则S6=(  )
A.18B.36C.54D.72

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.用符号(x]表示不小于x的最小整数,如(π]=4,(-1.2]=-1.则方程(x]-x=$\frac{1}{2}$在(1,4)上实数解的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在圆锥PO中,已知高PO=2,底面圆的半径为1;根据圆锥曲线的定义,下列四个图中的截面边界曲线分别为圆、椭圆、双曲线及抛物线,其中点M为所在母线的中点,O为底面圆的圆心,对于下面四个命题,正确的个数有(  )

①圆的面积为$\frac{π}{4}$;
②椭圆的长轴长为$\sqrt{13}$;
③双曲线两渐近线的夹角为arcsin$\frac{4}{5}$;
④抛物线上的点$(\frac{\sqrt{5}}{2},1)$,其焦点到准线的距离为$\frac{{\sqrt{5}}}{5}$.
A.1 个B.2 个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\left\{\begin{array}{l}\frac{2x+1}{{x}^{2}},x∈(-∞,-\frac{1}{2})\\ ln(x+1),x∈[-\frac{1}{2},+∞)\end{array}\right.$,g(x)=x2-4x-4,对于任意的a∈R,存在实数b使得f(a)+g(b)=0,则b的取值范围是(  )
A.[ln$\frac{1}{2}$,+∞)B.(-1,ln$\frac{1}{2}$]C.(-1,5)D.[-1,5]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.等边三角形ABC的两个顶点坐标分别为A(4,-6),B(-2,-6),求点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.棱长为2的正方体被一平面截得的几何体的三视图如图所示,那么被截去的几何体的体积是(  )
A.$\frac{14}{3}$B.$\frac{10}{3}$C.4D.$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=[x[x]](n<x<x+1,n∈N*),其中[x]表示不超过x的最大整数,如[-2.1]=-3,[-3]=-3,[2.5]=2.定义an是函数f(x)的值域中的元素个数,数列{an}的前n项和为Sn,若$\sum_{i=1}^{n}$$\frac{1}{{S}_{i}}$<$\frac{m}{10}$,对n∈N*均成立,则最小正整数m的值为(  )
A.18B.19C.20D.21

查看答案和解析>>

同步练习册答案