【题目】已知函数
(
,
)的图象与
轴交点的横坐标构成一个公差为
的等差数列,把函数
的图象沿
轴向左平移
个单位,纵坐标扩大到原来的2倍得到函数
的图象,则下列关于函数
的命题中正确的是( )
A.函数
是奇函数B.
的图象关于直线
对称
C.
在
上是增函数D.当
时,函数
的值域是![]()
科目:高中数学 来源: 题型:
【题目】某品牌经销商在一广场随机采访男性和女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:
微信控 | 非微信控 | 合计 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合计 | 56 | 44 | 100 |
(1)根据以上数据,能否有95%的把握认为“微信控”与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人,求所抽取的5人中“微信控”和“非微信控”的人数;
(3)从(2)中抽取的5位女性中,再随机抽取3人赠送礼品,试求抽取3人中恰有2人位“微信控”的概率.
参考公式:
,其中
.
参考数据:
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
为参数且
,
,
,曲线
的参数方程为
为参数),以
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求
的普通方程及
的直角坐标方程;
(2)若曲线
与曲线
分别交于点
,
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学为了调查该校学生性别与身高的关系,对该校1000名学生按照
的比例进行抽样调查,得到身高频数分布表如下:
男生身高频率分布表
男生身高 (单位:厘米) |
|
|
|
|
|
|
频数 | 7 | 10 | 19 | 18 | 4 | 2 |
女生身高频数分布表
女生身高 (单位:厘米) |
|
|
|
|
|
|
频数 | 3 | 10 | 15 | 6 | 3 | 3 |
(1)估计这1000名学生中女生的人数;
(2)估计这1000名学生中身高在
的概率;
(3)在样本中,从身高在
的女生中任取3名女生进行调查,设
表示所选3名学生中身高在
的人数,求
的分布列和数学期望.(身高单位:厘米)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,椭圆
:
的离心率为
,直线
与
交于
,
两点,
长度的最大值为4.
(1)求
的方程;
(2)直线
与
轴的交点为
,当直线
变化(
不与
轴重合)时,若
,求点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,椭圆C的中心在坐标原点O,其右焦点为
,且点
在椭圆C上.
![]()
求椭圆C的方程;
设椭圆的左、右顶点分别为A、B,M是椭圆上异于A,B的任意一点,直线MF交椭圆C于另一点N,直线MB交直线
于Q点,求证:A,N,Q三点在同一条直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十九世纪末,法国学者贝特朗在研究几何概型时提出了“贝特朗悖论”,即“在一个圆内任意选一条弦,这条弦的弦长长于这个圆的内接等边三角形边长的概率是多少?”贝特朗用“随机半径”、“随机端点”、“随机中点”三个合理的求解方法,但结果都不相同.该悖论的矛头直击概率概念本身,强烈地刺激了概率论基础的严格化.已知“随机端点”的方法如下:设A为圆O上一个定点,在圆周上随机取一点B,连接AB,所得弦长AB大于圆O的内接等边三角形边长的概率.则由“随机端点”求法所求得的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com